
Update confidential designator here

Version number here V00000

Memory Management
Subsystem

1

Update confidential designator here

Version number here V00000

Agenda

2

Overview ▸ Introduction
▸ Virtual Memory
▸ Memory addressing and translation
▸ Paging

—--------------------
▸ Linux memory management
▸ Process address space
▸ Memory zones
▸ APIs
▸ Slab cache
▸ GFP flags
▸ Linux kernel’s memory stack

Update confidential designator here

Version number here V00000

3

Early days of memory
management

Update confidential designator here

Version number here V00000

Optional section marker

4

▸ No multi-user or multi-programming computers

･ We could only have a single program running at a time

▸ Sometimes no OS was used

▸ Early days OS’es were just a small collection of libraries for common

hardware access

No need for memory management

Update confidential designator here

Version number here V00000

Optional section marker

5

▸ New computers brought more resources

･ faster CPUs

･ bigger amounts of memory

▸ Running a single program at a time became a waste of power, so we

reached a new era.

･ Multi-programs

･ Multi-user

･ Multi-problems

Better computers = New problems

Update confidential designator here

Version number here V00000

Optional section marker

6

▸ How to load many programs into memory at the same time and

ensure that:

･ Programs don’t need to be loaded on different addresses

･ They can’t access each other memory areas

･ Programs can’t monopolize the whole physical memory,

starving other programs.

▸ Virtual memory comes for the rescue

New era problems

Update confidential designator here

Version number here V00000

7

Virtual memory

Update confidential designator here

Version number here V00000

Optional section marker

8

▸ Memory management technique where the OS (with hardware

support) enables the system memory to be shared between

programs

･ Simplify the memory addressing for processes

･ Allow full isolation of memory between running programs

･ Memory allocated on-demand

Virtual memory concepts

Update confidential designator here

Version number here V00000

Optional section marker

9

▸ Transparency and illusion - it literally fools programs

･ An individual Address Space for each program.

▸ And this is how a program “sees” memory…

New abstractions

Update confidential designator here

Version number here V00000

Optional section marker

10

Address Space

Update confidential designator here

Version number here V00000

11

Memory addressing
and
address translation

Update confidential designator here

Version number here V00000

Optional section marker

12

▸ A “memory address” may have different meanings:

･ The Logical address

･ Generated using memory segments

･ The linear address

･ The virtual address

･ The Physical address

･ Address of memory cells in chips

The three memory addresses

Update confidential designator here

Version number here V00000

Optional section marker

13

▸ Addresses generated by programs are virtual addresses

▸ Physical <-> Virtual translation

･ Hardware’s low-level circuitry make the translations more

efficient.

･ every fetch/load/store causes an address translation

･ OS is responsible for managing it (control free/used memory,

access, etc)

Address translation

Update confidential designator here

Version number here V00000

14

Paging

Update confidential designator here

Version number here V00000

Optional section marker

15

▸ Physical memory is split into fixed-sized “slots” named:

･ Page Frames

▸ Processes address space is now divided in pages and not in segments

▸ A page IS NOT a page frame

･ Page = Chunk of data

･ Page frame = Physical “slot” within the machine’s memory

Memory paging

Update confidential designator here

Version number here V00000

Page vs Frame

16

Update confidential designator here

Version number here V00000

Optional section marker

17

▸ Pages are easier to manage

▸ Results in less fragmentation

▸ Memory usage is tracked through a “Page Table”

▸ Entries in the page table are called Page Table Entry (or PTE)

Memory paging #2

Update confidential designator here

Version number here V00000

Optional section marker

18

▸ Indexes all the pages used in the system

▸ Stores and indexes several PTEs

▸ Each PTE contains the needed information to perform an address

translation Physical <-> Virtual

▸ Page tables are “per process” data structures

･ Paging is slow - TLB for the rescue

･ Different architectures and OSes implement it in different ways

Page Tables

Update confidential designator here

Version number here V00000

Optional section marker

19

▸ We could implement a simple page table in a Linear way (using x86

32-bit as example), where given an address:

･ Bits: 12-31 -> describe the page index

･ Bits: 0 11 -> Offset within the page

▸ This is really simple, but has a big issue:

･ This gives us access to most 1MiB of memory

Page Tables implementation

Update confidential designator here

Version number here V00000

Optional section marker

20

▸ Preventing excessive memory consumption can be reached by

･ Employing a multi-level page table

▸ On 32-bit systems, the linear address space is split into 3 levels:

･ Page Directory (10 MSB)

･ Page table Entry (next 10 bits)

･ Offset (the last 12 LSB)

Page Tables implementation #2

Update confidential designator here

Version number here V00000

Optional section marker

21

Address translation using the page table

Update confidential designator here

Version number here V00000

Optional section marker

22

▸ Not all pages within a virtual address space need to be mapped to a

physical page

･ Processes usually don’t have the whole address space allocated

▸ An attempt to access a not yet mapped virtual address, will cause the

CPU to raise a “Page Fault” exception, passing the control back to

the operating system.

･ The OS will then map that page table

▸ The MMU does play a big role here, but we won’t dive into hardware

details

Multi-level paging details

Update confidential designator here

Version number here V00000

23

Linux kernel’s
memory management

Update confidential designator here

Version number here V00000

Optional section marker

24

▸ Memory allocation within a kernel is a different beast when compared

with user-space.

･ Allocating memory isn’t always easy, specially on embedded

systems where memory is short

･ Kernel often can’t sleep.

▸ We shall see how it works

Handling memory within kernel

Update confidential designator here

Version number here V00000

Optional section marker

25

▸ Quick recap

･ Memory is handled by the machine and kernel itself using MMU

when available to maintain the page tables and handle address

translation

･ Page size is architecture dependent

▸ Every physical page is represented by a page data structure

･ struct page goal is to describe the physical memory not the

data within it.

Linux Paging

Update confidential designator here

Version number here V00000

Optional section marker

26

▸ Linux defines page tables as a hierarchy (multi-level page tables)

▸ The code for the specific architectures will map this hierarchy to the

hardware restrictions.

▸ The number of levels in the page table varies depending on the

architecture

▸ Top-level address is stored in a CPU register

Linux Page Tables

Update confidential designator here

Version number here V00000

Optional section marker

27

▸ PGD -> P4D -> PUD -> PMD -> PTE

･ P4D was introduced to handle 5-level tables, only used with 5

levels, otherwise, it’s folded

Linux Page Table diagram

Update confidential designator here

Version number here V00000

28

Process Address
Space

Update confidential designator here

Version number here V00000

Optional section marker

29

▸ Memory region mapping for each process

▸ It can (and usually is) way larger than available physical memory

▸ Consists of:

･ Virtual memory addressable by a process

･ Addresses within the virtual memory the process is allowed to use

Process address space

Update confidential designator here

Version number here V00000

Optional section marker

30

▸ Flat address space given to a process

▸ Architecture dependent

▸ Processes see the same addresses, but the address space is unique for

each process

▸ Address spaces can be shared among process (Threads)

▸ The process does no have access to all addresses within the address space

Process address space #2

Update confidential designator here

Version number here V00000

Optional section marker

31

▸ Address spaces are split into memory areas that can be dynamically

added/removed (With kernel’s help)

▸ Memory areas have their own associated permissions (R, W, X)

▸ Don’t respect the permissions and you get a Segmentation fault

Process address space #3

Update confidential designator here

Version number here V00000

Optional section marker

32

▸ mm_struct - represents a process’s address space

▸ Linked to the process’s task_struct via current->mm field

address space descriptor (aka Memory descriptor)

Update confidential designator here

Version number here V00000

Optional section marker

33

▸ Kernel Thread definition:

･ A process without user context

▸ kernel threads have no process address space

･ No associated memory descriptor ->mm field is NULL

▸ No userspace pages, so, no page tables.

▸ So, without page tables, without a memory descriptor…

･ How kthreads deal with memory then?

Kernel threads address space

Update confidential designator here

Version number here V00000

Optional section marker

34

▸ They “borrow” the memory descriptor of whatever task ran before it.

▸ A process is scheduled…

･ The address space referenced by the ->mm field is loaded

･ The active_mm field is updated to this new address space

Kernel threads address space #2

Update confidential designator here

Version number here V00000

Optional section marker

35

▸ A kthread is scheduled…

･ The kernel sees the NULL ->mm field, and keeps the previous

address space still loaded.

･ The ->active_mm field of the kthread’s process descriptor is

updated to refer to the same address space of the previous

process (currently loaded).

▸ The kthread can use the previous process page tables as needed.

▸ Kthreads never access userspace pages AND all address space

information related to kernel memory, is the same for all processes.

Kernel threads address space #3

Update confidential designator here

Version number here V00000

Optional section marker

36

▸ vm_area_struct descriptor

▸ Represent individual memory areas within the Address Space

▸ Each memory area has its own properties

･ Permissions, associated operations…

▸ Each VM can represent different types of memory areas

･ mmapped files, user-space stack…

Virtual Memory Areas (VMAs)

Update confidential designator here

Version number here V00000

Optional section marker

37

Virtual memory areas #2

Shared Libraries

Data

mm pgd

mmap

Text

vm_end
vm_start
vm_prot
vm_flags

vm_end
vm_start
vm_prot
vm_flags

vm_end
vm_start
vm_prot
vm_flags

task_struct mm_struct vm_area_struct Process Virtual Memory

Update confidential designator here

Version number here V00000

Optional section marker

38

▸ VMAs are unique for the associated mm_struct

･ Each process has its own individual address space

･ We could have two processes mapping the same file in their

address spaces, and yet, each one will have an unique

vm_area_struct for that file map

▸ Threads sharing the same address space will also share the same

VMA regions.

Virtual memory areas (aka VMAs) #3

Update confidential designator here

Version number here V00000

Optional section marker

39

▸ Each VMA have its own permissions and purpose

▸ vm_page_prot and vm_flags configure such permissions

▸ Some of these settings are directly influenced by system calls such as
madvise()

Virtual memory areas (aka VMAs) #4

Update confidential designator here

Version number here V00000

Optional section marker

40

▸ Similar as filesystems behavior depends on the internal filesystem

implementation

▸ VMAs operations also can be customized depending on what is

mapped on such memory region

▸ Filesystems set specific vma operations to deal with mmapped files,

so the kernel know what to do in situations such as

･ Page faults, page mapping, write specific page frames

▸ Not mandatory, and the VFS provide some generic functions

VMA Operations

Update confidential designator here

Version number here V00000

Optional section marker

41

▸ New VMAs are allocated through do_mmap()

･ This is not (totally) related to mmap() syscall

▸ Possibly, it can simply merge the new request into an existing area

VMA Allocation

Update confidential designator here

Version number here V00000

42

Memory zones

Update confidential designator here

Version number here V00000

Optional section marker

43

▸ Hardware limitation may prevent some pages at some addresses to

be accessed.

･ Some devices can only perform DMA at certain addresses

･ Some architectures can physically access more memory than

they can virtually address (x86_32 for example)

▸ Zones are a “logical” layout - hardware itself knows nothing about it.

▸ Memory allocation is not restricted - Linux can fulfill requests from

different zones at any time, depending on memory usage.

▸ Zones are not used for every architecture

Linux divide memory in different zones

Update confidential designator here

Version number here V00000

Optional section marker

44
Referenced in include/linux/mmzone.h

▸ DMA

･

▸ Normal

･

▸ High Mem

･

Memory zones

Update confidential designator here

Version number here V00000

45

Linux’s memory
management APIs

Update confidential designator here

Version number here V00000

46

Page allocation

Update confidential designator here

Version number here V00000

Optional section marker

47

▸ Physical pages within kernel can be directly allocated using the

following mechanisms

･ alloc_page(), alloc_pages()

･ page_address()

･ __get_free_page(), __get_free_pages(),
__get_zeroed_page()

･ __free_pages(), free_pages(), free_page()

Allocating physical pages

Update confidential designator here

Version number here V00000

Optional section marker

48

▸ Pages are always allocated in page-size aligned granularity.

･ E.g - x86 architecture uses multiples of 4096 Bytes

▸ Allocated pages must be freed once you are done with them.

▸ Differently from user-space, the Kernel trusts itself, therefore:

･ There are no memory protection mechanisms

･ Kernel will happily let you free pages you didn’t allocate yourself

･ So, make sure you are freeing the right page(s)

Allocating physical pages #2

Update confidential designator here

Version number here V00000

Optional section marker

49

▸ A group of pages allocated together managed by a single

allocation: __GFP_COMP flag

▸ If a function receives a page structure pointer for a tail page, should it

act on the tail page or the compound page as a whole?

Compound pages

Base page Base page Base page Base page Base page

Head Page Tail Page

Update confidential designator here

Version number here V00000

Optional section marker

50

▸ PAGE_SIZE - returns the size of a base page

▸ page_size() - Returns the size of the whole page (possibly compound)

Compound pages #2

Update confidential designator here

Version number here V00000

Optional section marker

51

Folios

▸ A page struct wrapper that is guaranteed to not be a tail page

▸ Will come in handy page-cache supports compound pages

Update confidential designator here

Version number here V00000

52

General (byte-sized)
memory allocation
APIs

Update confidential designator here

Version number here V00000

Optional section marker

53

▸ Most of the time, we don’t need to deal with physical pages directly

▸ So, the kernel provides a few ways to virtually allocate memory in byte-size

chunks

･ Those mechanisms still manipulate physical pages under the hood

though.

Generic memory allocation

Update confidential designator here

Version number here V00000

Optional section marker

54

▸ Can be used to allocate a virtual memory region with a byte-size granularity

▸ Most flexible way to allocate memory within the kernel, because

･ Allocated regions are only virtually contiguous

･ There is no guarantee it will be physically contiguous too.

▸ Usually, only hardware devices require physically contiguous memory

vmalloc() - vfree()

Update confidential designator here

Version number here V00000

Optional section marker

55

▸ Because vmalloc()’ed memory is only virtually contiguous:

･ It requires the allocator to setup page tables, thich results in TLB

thrashing, so

･ vmalloc() is more expensive, might not be a good option when

performance is a must.

▸ On the other hand, with memory fragmentation, large contiguous regions of

memory becomes rare, so vmalloc() is a good alternative for large chunks of

data

▸ As any memory, vmalloc()’ed memory should also be freed

vmalloc() - vfree() #2

Update confidential designator here

Version number here V00000

56

SLAB caches

Update confidential designator here

Version number here V00000

Optional section marker

57

▸ Up until Linux 6.8, we had three different implementations of the SLAB cache.

･ SLAB, SLOB and SLUB

▸ Everything but SLUB got removed from Linux in 6.8

▸ Now we have a single implementation of the SLAB cache, using the SLUB

implementation.

▸ DO NOT CONFUSE SLAB Cache with its SLUB implementation.

SLAB, SLOB, SLUB

Update confidential designator here

Version number here V00000

Optional section marker

58

▸ Slabs are “pools” of pre-allocated memory regions of a specific size and/or data

type

▸ Whenever we need to allocate a new object, such object is already allocated

･ We save time with memory allocation

▸ This is doable for example, by allocating many objects at once, and using a list

of free objects to track them down… So, why a generic layer?

･ The kernel memory allocator wouldn’t be aware of this list usage so that it

couldn’t fine control it.

･ We don’t need to keep reinventing the wheel

What are SLABs?

Update confidential designator here

Version number here V00000

Optional section marker

59

▸ The Linux kernel provide a generic interface for that, known as SLAB Cache

▸ The SLAB cache attempts to leverage a few principles:

･ Frequently used data structures tend to be allocated/freed often

･ Frequent alloc/dealloc results in memory fragmentation over time

･ Memory alloc/dealloc are costly operations

What are SLABs? #2

Update confidential designator here

Version number here V00000

Optional section marker

60

▸ By using a generic layer, and centralizing memory allocation within the slab

layer, the kernel is aware of the usage of each slab cache, so it can:

･ Be aware of total cache and objects size

･ Shrink caches by freeing unused objects when needed (like a

low-memory scenario)

･ Create per-processor caches, so allocations can be performed without a

SMP lock

･ Stored objects can be configured to prevent multiple objects mapping to

the same cache lines

What are SLABs? #3

Update confidential designator here

Version number here V00000

Optional section marker

61

▸ Inode structs

▸ task_struct structs

▸ Almost everything inside kernel, that doesn’t need to deal with physical

memory directly.

SLAB cache usage examples

Update confidential designator here

Version number here V00000

Optional section marker

62

▸ Each cache is split into different “slabs”

▸ Each slab can be in three states:

･ full - partial - empty

▸ New allocation requests are attempted to be satisfied from a partially filled slab

(if one exists).

･ Fallback to an empty slab

･ Fallback to allocate a new slab and new objects within that slab

SLAB caches organization

Update confidential designator here

Version number here V00000

Optional section marker

63

▸ slab cache drawing

SLAB caches organization

Update confidential designator here

Version number here V00000

64

SLAB cache APIs

Update confidential designator here

Version number here V00000

Optional section marker

65

▸ Creating a new slab cache:

･ kmem_cache_create() - kmem_cache_destroy()

･ Behavior can be controlled using some flags

▸ Allocating objects from a specific cache:

･ kmem_cache_alloc()/kmem_cache_zalloc() - kmem_cache_free()

Dealing with slab cache

Update confidential designator here

Version number here V00000

Optional section marker

66

▸ The ‘default’ memory allocation mechanism for objects smaller than
PAGE SIZE

▸ Similar behavior to userspace malloc()/free() with a few

particularities

･ The flags parameter

･ The amount of memory that can be allocated, is limited.

･ Memory allocated is physically contiguous

kmalloc() - kfree()

Update confidential designator here

Version number here V00000

Optional section marker

67

▸ The amount of memory kmalloc() can allocate is limited, usually
2*PAGE_SIZE

▸ kfree() - free the regions allocated by kmalloc()

･ Again, kernel will happily let you kfree() random regions of

memory.

▸ kmalloc() is actually a generic abstraction of the slab layer

･ Under the hood, kmalloc() actually works by allocating

‘generic objects’ in a slab cache

kmalloc() - kfree() #2

Update confidential designator here

Version number here V00000

Optional section marker

68

▸ kmalloc() with a vmalloc() fallback

▸ It tries to allocate physically contiguous memory with kmalloc()

･ If it fails, it fallback to vmalloc() allocation

▸ Good alternative if you need memory at all costs and can for trade

performance.

･ And yet, it still can fail

▸ kvfree() - Free the memory region by type checking the kind of allocation

that has been done

kvmalloc() - kvfree()

Update confidential designator here

Version number here V00000

69

GFP Flags

Update confidential designator here

Version number here V00000

Optional section marker

70

▸ Allocating memory within the kernel is a bit more complicated

▸ Memory allocation might trigger unwanted or unexpected side-effects, like

･ Generate disk I/O to reclaim memory

･ Generate filesystem operations

･ Allocated memory is in a different region and a device can’t access it

for DMA

▸ The memory allocator in Linux, can be controlled using the Get Free Pages

(GPF) flags

Controlling the memory allocator

Update confidential designator here

Version number here V00000

Optional section marker

71

▸ GFP flags high-level categories

･ Zone modifiers - Zone selection

･ Mobility and placement flags - Reclaimable? Can it be migrated?

･ Watermark modifiers - Emergency memory reserves

･ Reclaim modifiers - How kernel can reclaim memory if needed

･ Action modifiers - Use different behaviors

▸ There are dozen of GFP flags, but most of the time, we will be using the

same ones over and over

GFP flags

Update confidential designator here

Version number here V00000

72

Linux Kernel’s stack

Update confidential designator here

Version number here V00000

Optional section marker

73

▸ Different from user-space, the kernel doesn’t have the luxury of a dynamically

allocated stack.

▸ The Kernel stack is small and of a fixed size

･ Size is architecture dependent - Usually 2 * PAGE_SIZE

▸ Linux kernel make very little effort to manage kernel-space processes stacks

･ Overflowing the stack will corrupt whatever data is beyond it (starting with

struct thread_info)

▸ KASAN has interesting options to debug stack overflows

Stack allocation within kernel

https://www.kernel.org/doc/html/next/x86/kernel-stacks.html

Update confidential designator here

Version number here V00000

Linux kernel stack

74

Update confidential designator here

Version number here V00000

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

75

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

