Memory Management
Subsystem




Agenda

Overview

Update confidential designator here

Introduction
Virtual Memory
Memory addressing and translation

Paging

Linux memory management
Process address space
Memory zones

APls

Slab cache

GEP flags

Linux kernel’'s memory stack

Version number here VOOOOO ‘ Red Hat



Update confidential designator here

Early days of memory
Mmanagement




Optional section marker Update confidential designator here

No need for memory management

» No multi-user or multi-programming computers
We could only have a single program running at a time
>  Sometimes no OS was used

» Early days OS’es were just a small collection of libraries for common

hardware access
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Better computers = New problems

» New computers brought more resources
faster CPUs
bigger amounts of memory

» Running a single program at a time became a waste of power, so we

reached a new era.
Multi-programs
Multi-user
Multi-problems
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New era problems

» How to load many programs into memory at the same time and

ensure that:

Programs don't need to be loaded on different addresses
They can't access each other memory areas

Programs can't monopolize the whole physical memory,

starving other programs.

> Virtual memory comes for the rescue
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Virtual memory




Optional section marker Update confidential designator here

Virtual memory concepts

» Memory management technique where the OS (with hardware
support) enables the system memory to be shared between

programs
Simplify the memory addressing for processes
Allow full isolation of memory between running programs

Memory allocated on-demand

Version number here VOOO0O ‘ Red Hat
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New abstractions

» Transparency and illusion - it literally fools programs
An individual Address Space for each program.

» And thisis how a program “sees” memory...

Version number here VOOO0O ‘ Red Hat
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The three memory addresses

A "memory address” may have different meanings:
The Logical address
Generated using memory segments
The linear address
The virtual address
The Physical address

Address of memory cells in chips

Update confidential designator here
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Address translation

» Addresses generated by programs are virtual addresses
» Physical <-> Virtual translation

Hardware's low-level circuitry make the translations more

efficient.
every fetch/load/store causes an address translation

OS is responsible for managing it (control free/used memory,

access, etc)
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Memory paging

Physical memory is split into fixed-sized “slots” named:

Page Frames
Processes address space is now divided in pages and not in segments
A page IS NOT a page frame

Page = Chunk of data

Page frame = Physical “slot” within the machine’s memory

Version number here VOOO0O ‘ Red Hat
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Memory paging #2

Pages are easier to manage
Results in less fragmentation
Memory usage is tracked through a “Page Table”

Entries in the page table are called Page Table Entry (or PTE)

Update confidential designator here
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Update confidential designator here

Page Tables

Indexes all the pages used in the system
Stores and indexes several PTEs

Each PTE contains the needed information to perform an address

translation Physical <-> Virtual
Page tables are “per process” data structures
Pagingis slow - TLB for the rescue

Different architectures and OSes implement it in different ways

Version number here VOOOOO
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Page Tables implementation

We could implement a simple page table in a Linear way (using x86

32-bit as example), where given an address:
Bits: 12-31-> describe the page index
Bits: O 11 -> Offset within the page
This is really simple, but has a big issue:

This gives us access to most IMiB of memory

Version number here VOOOOO
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Page Tables implementation #2

Preventing excessive memory consumption can be reached by
Employing a multi-level page table

On 32-bit systems, the linear address space is split into 3 levels:
Page Directory (10 MSB)
Page table Entry (next 10 bits)

Offset (the last 12 LSB)

Update confidential designator here
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Address translation using the page table

Linear Address
Dir |[Table | Offset Physical
Address
, 12 bits Space
. 10 bits
10 bits
Page Table Page
Page Directory Bhy. Addr
l--> Enty Hoawl——----
> Entry .
1024 entries
1024 entries
4096 bytes
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Update confidential designator here

Multi-level paging details

Not all pages within a virtual address space need to be mapped to a

physical page
Processes usually don't have the whole address space allocated

An attempt to access a not yet mapped virtual address, will cause the
CPU to raise a "Page Fault” exception, passing the control back to

the operating system.
The OS will then map that page table

The MMU does play a big role here, but we won't dive into hardware

details

Version number here VOOOOO
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memory management




24

Optional section marker

>

>

Update confidential designator here

Handling memory within kernel

Memory allocation within a kernel is a different beast when compared

with user-space.

Allocating memory isn't always easy, specially on embedded

systems where memory is short
Kernel often can't sleep.

We shall see how it works
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Optional section marker

Linux Paging

> Quick recap

Memory is handled by the machine and kernel itself using MMU
when available to maintain the page tables and handle address

translation
Page size is architecture dependent
» Every physical page is represented by a page data structure

struct page goal is to describe the physical memory not the

data within it.

25
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Linux Page Tables

Linux defines page tables as a hierarchy (multi-level page tables)

The code for the specific architectures will map this hierarchy to the

hardware restrictions.

The number of levels in the page table varies depending on the

architecture

Top-level address is stored in a CPU register

Version number here VOOO0O ‘ Red Hat
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Linux Page Table diagram

PGD -> P4D -> PUD -> PMD -> PTE

Update confidential designator here

P4D was introduced to handle 5-level tables, only used with 5

levels, otherwise, it's folded
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Process address space

Memory region mapping for each process
It can (and usually is) way larger than available physical memory
Consists of:

Virtual memory addressable by a process

Addresses within the virtual memory the process is allowed to use

Version number here VOOO0O ‘ Red Hat
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Update confidential designator here

Process address space #2

Flat address space given to a process
Architecture dependent

Processes see the same addresses, but the address space is unique for

each process
Address spaces can be shared among process (Threads)

The process does no have access to all addresses within the address space

Version number here VOOO0O ‘ Red Hat
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Process address space #3

Address spaces are split into memory areas that can be dynamically
added/removed (With kernel’s help)

Memory areas have their own associated permissions (R, W, X)

Don’'t respect the permissions and you get a Segmentation fault

Version number here VOOO0O ‘ Red Hat
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address space descriptor (aka Memory descriptor)

> mm_struct - represents a process’s address space

» Linked to the process’s task_struct via current->mm field

Version number here VOOOOO
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Kernel threads address space

Kernel Thread definition:
A process without user context
kernel threads have no process address space
No associated memory descriptor ->mm field is NULL
No userspace pages, so, no page tables.
So, without page tables, without a memory descriptor...

How kthreads deal with memory then?

Update confidential designator here
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Kernel threads address space #2

»  They "borrow” the memory descriptor of whatever task ran before it.
» A processis scheduled...
The address space referenced by the ->mm field is loaded

The active_mm field is updated to this new address space

34
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Kernel threads address space #3

» A kthread is scheduled...

The kernel sees the NULL ->mm field, and keeps the previous

address space still loaded.

The ->active_mm field of the kthread’s process descriptor is
updated to refer to the same address space of the previous
process (currently loaded).

» The kthread can use the previous process page tables as needed.

» Kthreads never access userspace pages AND all address space

information related to kernel memory, is the same for all processes.

35
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Virtual Memory Areas (VMAS)

vm_area_struct descriptor
Represent individual memory areas within the Address Space
Each memory area has its own properties
Permissions, associated operations...
Each VM can represent different types of memory areas

mmapped files, user-space stack...

Update confidential designator here
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task_struct

Virtual memory areas #2

mm_struct

pgd

vm_area_struct

vm_end

vm_start

vim_prot

Update confidential designator here

Process Virtual Memory

mmap

vm_flags

Shared Libraries

vm_end

\
T

vm_start

vim_prot

vm_flags

vm_end

vm_start

vim_prot

Data

Text

vm_flags
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Virtual memory areas (aka VMAS) #3

» VMAs are unique for the associated mm_struct
Each process has its own individual address space

We could have two processes mapping the same file in their
address spaces, and yet, each one will have an unique

vim_area_struct for that file map

» Threads sharing the same address space will also share the same

VMA regions.

38
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Update confidential designator here

Virtual memory areas (aka VMASs) #4

Each VMA have its own permissions and purpose
vm_page_prot and vm_flags configure such permissions

Some of these settings are directly influenced by system calls such as

madvise()

Version number here VOOOOO
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VMA Operations

Similar as filesystems behavior depends on the internal filesystem
implementation

VMAs operations also can be customized depending on what is

mapped on such memory region

Filesystems set specific vma operations to deal with mmapped files,

so the kernel know what to do in situations such as
Page faults, page mapping, write specific page frames

Not mandatory, and the VFS provide some generic functions

Version number here VOOO0O ‘ Red Hat
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VMA Allocation

New VMAs are allocated through do_mmap ()
This is not (totally) related to mmap () syscall

Possibly, it can simply merge the new request into an existing area

Version number here VOOO0O ‘ Red Hat
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Linux divide memory in different zones

Hardware limitation may prevent some pages at some addresses to

be accessed.
Some devices can only perform DMA at certain addresses

Some architectures can physically access more memory than

they can virtually address (x86_32 for example)
Zones are a “logical” layout - hardware itself knows nothing about it.

Memory allocation is not restricted - Linux can fulfill requests from

different zones at any time, depending on memory usage.

Zones are not used for every architecture

Version number here VOOOOO
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> DMA

»  Normal

»  High Mem

Referenced in include/linux/mmzone.h

Memory zones

Update confidential designator here
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Linux’'s memory
management APIs
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Page allocation
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Allocating physical pages

Physical pages within kernel can be directly allocated using the

following mechanisms
alloc_page(), alloc_pages()
page_address()

__get_free_page(), __get_free_pages(),
__get_zeroed_page()

__free_pages(), free_pages(), free_page()

Update confidential designator here
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Allocating physical pages #2

Pages are always allocated in page-size aligned granularity.

E.g - x86 architecture uses multiples of 4096 Bytes
Allocated pages must be freed once you are done with them.
Differently from user-space, the Kernel trusts itself, therefore:

There are no memory protection mechanisms

Kernel will happily let you free pages you didn't allocate yourself

So, make sure you are freeing the right page(s)

Version number here VOOOOO
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Compound pages

» A group of pages allocated together managed by a single

allocation: __GFP_COMP flag

If a function receives a page structure pointer for a tail page, should it

act on the tail page or the compound page as a whole?

Base page || Base page || Base page || Base page || Base page

\V

Head Page  Tail Page

Version number here VOOO0O ‘ Red Hat
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Compound pages #2

PAGE_SIZE - returns the size of a base page

page_size() - Returns the size of the whole page (possibly compound)

Version number here VOOOOO
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Folios

A page struct wrapper that is guaranteed to not be a tail page

Will come in handy page-cache supports compound pages

Update confidential designator here
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Generic memory allocation

» Most of the time, we don't need to deal with physical pages directly

» So, the kernel provides a few ways to virtually allocate memory in byte-size

chunks

Those mechanisms still manipulate physical pages under the hood

though.

53
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vmalloc() - viree()

Can be used to allocate a virtual memory region with a byte-size granularity
Most flexible way to allocate memory within the kernel, because

Allocated regions are only virtually contiguous

There is no guarantee it will be physically contiguous too.

Usually, only hardware devices require physically contiguous memory

Version number here VOOO0O ‘ Red Hat
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vmalloc() - viree() #2

» Because vmalloc()'ed memory is only virtually contiguous:

It requires the allocator to setup page tables, thich results in TLB

thrashing, so

vmalloc() is more expensive, might not be a good option when

performance is a must.

» On the other hand, with memory fragmentation, large contiguous regions of

memory becomes rare, so vmalloc() is a good alternative for large chunks of

data

> As any memory, vmalloc()'ed memory should also be freed
55
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SLAB, SLOB, SLUB

Up until Linux 6.8, we had three different implementations of the SLAB cache.
SLAB, SLOB and SLUB
Everything but SLUB got removed from Linuxin 6.8

Now we have a single implementation of the SLAB cache, using the SLUB

implementation.

DO NOT CONFUSE SLAB Cache with its SLUB implementation.
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What are SLABSs?

» Slabs are “pools” of pre-allocated memory regions of a specific size and/or data
type
»  Whenever we need to allocate a new object, such object is already allocated

We save time with memory allocation

» This is doable for example, by allocating many objects at once, and using a list

of free objects to track them down... So, why a generic layer?

The kernel memory allocator wouldn’t be aware of this list usage so that it

couldn’t fine control it.

We don't need to keep reinventing the wheel

58
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What are SLABSs? #2

» The Linux kernel provide a generic interface for that, known as SLAB Cache
» The SLAB cache attempts to leverage a few principles:
Frequently used data structures tend to be allocated/freed often
Frequent alloc/dealloc results in memory fragmentation over time

Memory alloc/dealloc are costly operations

59
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What are SLABs? #3

» By using a generic layer, and centralizing memory allocation within the slab

layer, the kernel is aware of the usage of each slab cache, so it can:
Be aware of total cache and objects size

Shrink caches by freeing unused objects when needed (like a

low-memory scenario)

Create per-processor caches, so allocations can be performed without a
SMP lock

Stored objects can be configured to prevent multiple objects mapping to

the same cache lines
Version number here VOOO0O ‘ Red Hat
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SLAB cache usage examples

Inode structs

task_struct structs

Almost everything inside kernel, that doesn’t need to deal with physical

memory directly.
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SLAB caches organization

Each cache is split into different “slabs”
Each slab can be in three states:
full - partial - empty

New allocation requests are attempted to be satisfied from a partially filled slab

(if one exists).
Fallback to an empty slab

Fallback to allocate a new slab and new objects within that slab
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SLAB caches organization

» slab cache drawing

serensenn
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Optional section marker

Dealing with slab cache

» Creating a new slab cache:
kmem_cache_create() - kmem_cache_destroy()

Behavior can be controlled using some flags

» Allocating objects from a specific cache:

Update confidential designator here

kmem_cache_alloc()/kmem_cache_zalloc() - kmem_cache_free()

65
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kmalloc() - kfree()

» The ‘default’ memory allocation mechanism for objects smaller than
PAGE SIZE

> Similar behavior to userspace malloc()/free() with a few
particularities

The flags parameter
The amount of memory that can be allocated, is limited.

Memory allocated is physically contiguous

66
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krmalloc() - kfree() #2

» The amount of memory kmalloc () can allocate is limited, usually
2*PAGE_SIZE

» kfree() -freetheregionsallocated by kmalloc()

Again, kernel will happily let you kfree() random regions of

memory.
» kmalloc() is actually a generic abstraction of the slab layer

Under the hood, kmalloc () actually works by allocating

‘generic objects’ in a slab cache
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kvmalloc() - kvfree()

kmalloc () withavmalloc() fallback
It tries to allocate physically contiguous memory with kmalloc()
If it fails, it fallback to vmalloc () allocation

Good alternative if you need memory at all costs and can for trade

performance.
And yet, it still can fail
kvfree() - Free the memory region by type checking the kind of allocation

that has been done
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Controlling the memory allocator

Allocating memory within the kernel is a bit more complicated

Memory allocation might trigger unwanted or unexpected side-effects, like
Generate disk /O to reclaim memory
Generate filesystem operations

Allocated memory is in a different region and a device can't access it
for DMA

The memory allocator in Linux, can be controlled using the Get Free Pages
(GPF) flags
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GFP flags

» GFP flags high-level categories
Zone modifiers - Zone selection
Mobility and placement flags - Reclaimable? Can it be migrated?
Watermark modifiers - Emergency memory reserves
Reclaim modifiers - How kernel can reclaim memory if needed
Action modifiers - Use different behaviors

» There are dozen of GFP flags, but most of the time, we will be using the

same ones over and over

71
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Stack allocation within kernel

» Different from user-space, the kernel doesn’t have the luxury of a dynamically

allocated stack.
> The Kernel stack is small and of a fixed size
Size is architecture dependent - Usually 2 * PAGE_SIZE
» Linux kernel make very little effort to manage kernel-space processes stacks

Overflowing the stack will corrupt whatever data is beyond it (starting with

struct thread_info)

v

KASAN has interesting options to debug stack overflows
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https:/www.kernel.org/doc/html/next/x86/kernel-stacks.html



start of stack-»

grows down

stack pointer -

unused

current_thread_info

74

Linux kernel stack
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Kernel
- virtual
memory

Process
> virtual
memory
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