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Overview ▸ Introduction
▸ Virtual Memory
▸ Memory addressing and translation
▸ Paging

—--------------------
▸ Linux memory management
▸ Process address space
▸ Memory zones
▸ APIs
▸ Slab cache
▸ GFP flags
▸ Linux kernel’s memory stack
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Early days of memory 
management
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▸ No multi-user or multi-programming computers

･ We could only have a single program running at a time

▸ Sometimes no OS was used

▸ Early days OS’es were just a small collection of libraries for common 

hardware access

No need for memory management
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▸ New computers brought more resources

･ faster CPUs

･ bigger amounts of memory

▸ Running a single program at a time became a waste of power, so we 

reached a new era.

･ Multi-programs

･ Multi-user

･ Multi-problems

Better computers = New problems
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▸ How to load many programs  into memory at the same time and 

ensure that:

･ Programs don’t need to be loaded on different addresses

･ They can’t access each other memory areas

･ Programs can’t monopolize the whole physical memory, 

starving other programs.

▸ Virtual memory comes for the rescue

New era problems
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Virtual memory
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▸ Memory management technique where the OS (with hardware 

support) enables the system memory to be shared between 

programs

･ Simplify the memory addressing for processes

･ Allow full isolation of memory between running programs

･ Memory allocated on-demand

Virtual memory concepts
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▸ Transparency and illusion - it literally fools programs

･ An individual Address Space for each program.

▸ And this is how a program “sees” memory…

New abstractions
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Address Space
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Memory addressing 
and
address translation
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▸ A “memory address” may have different meanings:

･ The Logical address

･ Generated using memory segments

･ The linear address

･ The virtual address

･ The Physical address 

･ Address of memory cells in chips

The three memory addresses
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▸ Addresses generated by programs are virtual addresses

▸ Physical <-> Virtual translation

･ Hardware’s low-level circuitry make the translations more 

efficient.

･ every fetch/load/store causes an address translation

･ OS is responsible for managing it (control free/used memory, 

access, etc)

Address translation
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Paging



Update confidential designator here

Version number here V00000

Optional section marker

15

▸ Physical memory is split into fixed-sized “slots” named:

･ Page Frames

▸ Processes address space is now divided in pages and not in segments

▸ A page IS NOT a page frame

･ Page = Chunk of data

･ Page frame = Physical “slot” within the machine’s memory

Memory paging
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▸ Pages are easier to manage

▸ Results in less fragmentation

▸ Memory usage is tracked through a “Page Table”

▸ Entries in the page table are called Page Table Entry (or PTE)

Memory paging #2
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▸ Indexes all the pages used in the system

▸ Stores and indexes several PTEs

▸ Each PTE contains the needed information to perform an address 

translation Physical <-> Virtual

▸ Page tables are “per process” data structures

･ Paging is slow - TLB for the rescue

･ Different architectures and OSes implement it in different ways

Page Tables
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▸ We could implement a simple page table in a Linear way (using x86 

32-bit as example), where given an address:

･ Bits: 12-31 -> describe the page index

･ Bits: 0 11 -> Offset within the page

▸ This is really simple, but has a big issue:

･ This gives us access to most 1MiB of memory

Page Tables implementation
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▸ Preventing excessive memory consumption can be reached by

･ Employing a multi-level page table

▸ On 32-bit systems, the linear address space is split into 3 levels:

･ Page Directory (10 MSB)

･ Page table Entry (next 10 bits)

･ Offset (the last 12 LSB)

Page Tables implementation #2
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Address translation using the page table
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▸ Not all pages within a virtual address space need to be mapped to a 

physical page

･ Processes usually don’t have the whole address space allocated

▸ An attempt to access a not yet mapped virtual address, will cause the 

CPU to raise a “Page Fault” exception, passing the control back to 

the operating system.

･ The OS will then map that page table

▸ The MMU does play a big role here, but we won’t dive into hardware 

details

Multi-level paging details
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Linux kernel’s
memory management
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▸ Memory allocation within a kernel is a different beast when compared 

with user-space.

･ Allocating memory isn’t always easy, specially on embedded 

systems where memory is short

･ Kernel often can’t sleep.

▸ We shall see how it works

Handling memory within kernel
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▸ Quick recap

･ Memory is handled by the machine and kernel itself using MMU 

when available to maintain the page tables and handle address 

translation

･ Page size is architecture dependent

▸ Every physical page is represented by a page data structure

･ struct page goal is to describe the physical memory not the 

data within it.

Linux Paging



Update confidential designator here

Version number here V00000

Optional section marker

26

▸ Linux defines page tables as a hierarchy (multi-level page tables)

▸ The code for the specific architectures will map this hierarchy to the 

hardware restrictions.

▸ The number of levels in the page table varies depending on the 

architecture

▸ Top-level address is stored in a CPU register

Linux Page Tables
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▸ PGD -> P4D -> PUD -> PMD -> PTE

･ P4D was introduced to handle 5-level tables, only used with 5 

levels, otherwise, it’s folded

Linux Page Table diagram
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Process Address 
Space
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▸ Memory region mapping for each process

▸ It can (and usually is) way larger than available physical memory

▸ Consists of:

･ Virtual memory addressable by a process

･ Addresses within the virtual memory the process is allowed to use

Process address space
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▸ Flat address space given to a process

▸ Architecture dependent

▸ Processes see the same addresses, but the address space is unique for 

each process

▸ Address spaces can be shared among process (Threads)

▸ The process does no have access to all addresses within the address space

Process address space #2
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▸ Address spaces are split into memory areas that can be dynamically 

added/removed (With kernel’s help)

▸ Memory areas have their own associated permissions (R, W, X)

▸ Don’t respect the permissions and you get a Segmentation fault

Process address space #3
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▸ mm_struct - represents a process’s address space

▸ Linked to the process’s task_struct via current->mm field

address space descriptor (aka Memory descriptor)
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▸ Kernel Thread definition:

･ A process without user context

▸ kernel threads have no process address space

･ No associated memory descriptor ->mm field is NULL

▸ No userspace pages, so, no page tables.

▸ So, without page tables, without a memory descriptor…

･ How kthreads deal with memory then?

Kernel threads address space



Update confidential designator here

Version number here V00000

Optional section marker

34

▸ They “borrow” the memory descriptor of whatever task ran before it.

▸ A process is scheduled…

･ The address space referenced by the ->mm field is loaded

･ The active_mm field is updated to this new address space

Kernel threads address space #2
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▸ A kthread is scheduled…

･ The kernel sees the NULL ->mm field, and keeps the previous 

address space still loaded.

･ The ->active_mm field of the kthread’s process descriptor is 

updated to refer to the same address space of the previous 

process (currently loaded).

▸ The kthread can use the previous process page tables as needed.

▸ Kthreads never access userspace pages AND all address space 

information related to kernel memory, is the same for all processes.

Kernel threads address space #3
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▸ vm_area_struct descriptor

▸ Represent individual memory areas within the Address Space

▸ Each memory area has its own properties

･ Permissions, associated operations…

▸ Each VM can represent different types of memory areas

･ mmapped files, user-space stack…

Virtual Memory Areas (VMAs)
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Virtual memory areas #2

Shared Libraries

Data

mm pgd

mmap

Text

vm_end
vm_start
vm_prot
vm_flags

vm_end
vm_start
vm_prot
vm_flags

vm_end
vm_start
vm_prot
vm_flags

task_struct mm_struct vm_area_struct Process Virtual Memory
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▸ VMAs are unique for the associated mm_struct

･ Each process has its own individual address space

･ We could have two processes mapping the same file in their 

address spaces, and yet, each one will have an unique 

vm_area_struct for that file map

▸ Threads sharing the same address space will also share the same 

VMA regions.

Virtual memory areas (aka VMAs) #3
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▸ Each VMA have its own permissions and purpose

▸ vm_page_prot and vm_flags configure such permissions

▸ Some of these settings are directly influenced by system calls such as 
madvise()

Virtual memory areas (aka VMAs) #4
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▸ Similar as filesystems behavior depends on the internal filesystem 

implementation

▸ VMAs operations also can be customized depending on what is 

mapped on such memory region

▸ Filesystems set specific vma operations to deal with mmapped files, 

so the kernel know what to do in situations such as

･ Page faults, page mapping, write specific page frames

▸ Not mandatory, and the VFS provide some generic functions

VMA Operations
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▸ New VMAs are allocated through do_mmap()

･ This is not (totally) related to mmap() syscall

▸ Possibly, it can simply merge the new request into an existing area

VMA Allocation
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Memory zones
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▸ Hardware limitation may prevent some pages at some addresses to 

be accessed.

･ Some devices can only perform DMA at certain addresses

･ Some architectures can physically access more memory than 

they can virtually address (x86_32 for example)

▸ Zones are a “logical” layout - hardware itself knows nothing about it.

▸ Memory allocation is not restricted - Linux can fulfill requests from 

different zones at any time, depending on memory usage.

▸ Zones are not used for every architecture

Linux divide memory in different zones
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Referenced in include/linux/mmzone.h

▸ DMA

･

▸ Normal

･

▸ High Mem

･

Memory zones
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Linux’s memory 
management APIs
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Page allocation
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▸ Physical pages within kernel can be directly allocated using the 

following mechanisms

･ alloc_page(), alloc_pages()

･ page_address()

･ __get_free_page(), __get_free_pages(), 
__get_zeroed_page()

･ __free_pages(), free_pages(), free_page()

Allocating physical pages
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▸ Pages are always allocated in page-size aligned granularity.

･ E.g - x86 architecture uses multiples of 4096 Bytes

▸ Allocated pages must be freed once you are done with them.

▸ Differently from user-space, the Kernel trusts itself, therefore:

･ There are no memory protection mechanisms

･ Kernel will happily let you free pages you didn’t allocate yourself

･ So, make sure you are freeing the right page(s)

Allocating physical pages #2
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▸ A group of pages allocated together managed by a single

allocation:  __GFP_COMP flag

▸ If a function receives a page structure pointer for a tail page, should it

act on the tail page or the compound page as a whole?

Compound pages

Base page Base page Base page Base page Base page

Head Page Tail Page
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▸ PAGE_SIZE - returns the size of a base page

▸ page_size() - Returns the size of the whole page (possibly compound)

Compound pages #2
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Folios

▸ A page struct wrapper that is guaranteed to not be a tail page

▸ Will come in handy page-cache supports compound pages
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General (byte-sized) 
memory allocation 
APIs
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▸ Most of the time, we don’t need to deal with physical pages directly

▸ So, the kernel provides a few ways to virtually allocate memory in byte-size 

chunks

･ Those mechanisms still manipulate physical pages under the hood 

though.

Generic memory allocation
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▸ Can be used to allocate a virtual memory region with a byte-size granularity

▸ Most flexible way to allocate memory within the kernel, because

･ Allocated regions are only virtually contiguous

･ There is no guarantee it will be physically contiguous too.

▸ Usually, only hardware devices require physically contiguous memory

vmalloc() - vfree()
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▸ Because vmalloc()’ed memory is only virtually contiguous:

･ It  requires the allocator to setup page tables, thich results in TLB 

thrashing, so

･ vmalloc() is more expensive, might not be a good option when 

performance is a must.

▸ On the other hand, with memory fragmentation, large contiguous regions of 

memory becomes rare, so vmalloc() is a good alternative for large chunks of 

data

▸ As any memory, vmalloc()’ed memory should also be freed

vmalloc() - vfree() #2
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SLAB caches
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▸ Up until Linux 6.8, we had three different implementations of the SLAB cache.

･ SLAB, SLOB and SLUB

▸ Everything but  SLUB got removed from Linux in 6.8

▸ Now we have a single implementation of the SLAB cache, using the SLUB 

implementation.

▸ DO NOT CONFUSE SLAB Cache with its SLUB implementation.

SLAB, SLOB, SLUB
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▸ Slabs are “pools” of pre-allocated memory regions of a specific size and/or data 

type

▸ Whenever we need to allocate a new object, such object is already allocated

･ We save time with memory allocation

▸ This is doable for example, by allocating many objects at once, and using a list 

of free objects to track them down… So, why a generic layer?

･ The kernel memory allocator wouldn’t be aware of this list usage so that it 

couldn’t fine control it.

･ We don’t need to keep reinventing the wheel

What are SLABs?



Update confidential designator here

Version number here V00000

Optional section marker

59

▸ The Linux kernel provide a generic interface for that, known as SLAB Cache

▸ The SLAB cache attempts to leverage a few principles:

･ Frequently used data structures tend to be allocated/freed often

･ Frequent alloc/dealloc results in memory fragmentation over time

･ Memory alloc/dealloc are costly operations

What are SLABs? #2
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▸ By using a generic layer, and centralizing memory allocation within the slab 

layer, the kernel is aware of the usage of each slab cache, so it can:

･ Be aware of total cache and objects size

･ Shrink caches by freeing unused objects when needed (like a 

low-memory scenario)

･ Create per-processor caches, so allocations can be performed without a 

SMP lock

･ Stored objects can be configured to prevent multiple objects mapping to 

the same cache lines

What are SLABs? #3
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▸ Inode structs

▸ task_struct structs

▸ Almost everything inside kernel, that doesn’t need to deal with physical 

memory directly.

SLAB cache usage examples
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▸ Each cache is split into different “slabs”

▸ Each slab can be in three states:

･ full - partial - empty

▸ New allocation requests are attempted to be satisfied from a partially filled slab 

(if one exists).

･ Fallback to an empty slab

･ Fallback to allocate a new slab and new objects within that slab

SLAB caches organization
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▸ slab cache drawing

SLAB caches organization
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SLAB cache APIs
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▸ Creating a new slab cache:

･ kmem_cache_create() - kmem_cache_destroy()

･ Behavior can be controlled using some flags

▸ Allocating objects from a specific cache:

･ kmem_cache_alloc()/kmem_cache_zalloc() - kmem_cache_free()

Dealing with slab cache
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▸ The ‘default’ memory allocation mechanism for objects smaller than 
PAGE SIZE

▸ Similar behavior to userspace malloc()/free() with a few 

particularities

･ The flags parameter

･ The amount of memory that can be allocated, is limited.

･ Memory allocated is physically contiguous

kmalloc() - kfree()
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▸ The amount of memory kmalloc() can allocate is limited, usually 
2*PAGE_SIZE

▸ kfree() - free the regions allocated by kmalloc()

･ Again, kernel will happily let you kfree() random regions of 

memory.

▸ kmalloc() is actually a generic abstraction of the slab layer

･ Under the hood, kmalloc() actually works by allocating    

‘generic objects’ in a slab cache

kmalloc() - kfree() #2
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▸ kmalloc() with a vmalloc() fallback

▸ It tries to allocate physically contiguous memory with kmalloc()

･ If it fails, it fallback to vmalloc() allocation

▸ Good alternative if you need memory at all costs and can for trade 

performance.

･ And yet, it still can fail

▸ kvfree() - Free the memory region by type checking the kind of allocation 

that has been done

kvmalloc() - kvfree()
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GFP Flags
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▸ Allocating memory within the kernel is a bit more complicated

▸ Memory allocation might trigger unwanted or unexpected side-effects, like

･ Generate disk I/O to reclaim memory

･ Generate filesystem operations

･ Allocated memory is in a different region and a device can’t access it 

for DMA

▸ The memory allocator in Linux, can be controlled using the Get Free Pages 

(GPF) flags

Controlling the memory allocator
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▸ GFP flags high-level categories

･ Zone modifiers - Zone selection

･ Mobility and placement flags - Reclaimable? Can it be migrated?

･ Watermark modifiers - Emergency memory reserves

･ Reclaim modifiers - How kernel can reclaim memory if needed

･ Action modifiers - Use different behaviors

▸ There are dozen of GFP flags, but most of the time, we will be using the 

same ones over and over

GFP flags
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Linux Kernel’s stack
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▸ Different from user-space, the kernel doesn’t have the luxury of a dynamically 

allocated stack.

▸ The Kernel stack is small and of a fixed size

･ Size is architecture dependent - Usually  2 * PAGE_SIZE

▸ Linux kernel make very little effort to manage kernel-space processes stacks

･ Overflowing the stack will corrupt whatever data is beyond it (starting with 

struct thread_info)

▸ KASAN has interesting options to debug stack overflows

Stack allocation within kernel

https://www.kernel.org/doc/html/next/x86/kernel-stacks.html
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Red Hat is the world’s leading provider of enterprise 

open source software solutions. Award-winning 

support, training, and consulting services make 

Red Hat a trusted adviser to the Fortune 500. 

Thank you


