Filesystem and Storage
Subsystems

Agenda Update confidential designator here

Ove rV| eW » Introduction to storage and block devices

> Virtual File system

» The Block I/O Layer

» Process Address Space

» Page cache and Page Writeback
» Case study - ToyFS filesystem

Version number here VOOO0OO ‘ Red Hat

Update confidential designator here

What is a File?

Update confidential designator here

Whatis a
Filesystem?

Update confidential designator here

Introduction

Optional section marker Update confidential designator here

What are block devices?

» Storage devices are accessible through sector/block addresses
HDDs, SSDs, DVD/Blu-Ray etc
» Using specific communication protocols to access

IDE, SCSI, SATA, SAS, etc

Version number here VOOO0O ‘ Red Hat

Optional section marker Update confidential designator here

The sector as the fundamental unit

» Storage’s smallest addressable unit

» Come by many names
Sectors, physical block size, /O blocks...

» May come in different sizes depending on the media
512 Bytes
4096 Bytes - 512e and 4KN

2KiB - 64Kib (Blu-Rays)

Version number here VOOO0O ‘ Red Hat

Optional section marker Update confidential designator here

Logical Blocks

» Aggregation of one or more consecutive physical sectors
» Smallest “logical” addressable unit for logical volumes
RAID arrays
LVVMs volumes (depending on volume type)

other volume managers.

Version number here VOOO0O ‘ Red Hat

Optional section marker Update confidential designator here

Filesystem Blocks

» Aggregation of one or more consecutive physical blocks, depending

on the underlying media
> Smallest “logical” addressable unit for:
Filesystems

User applications

Version number here VOOO0O ‘ Red Hat

Optional section marker

>

>

Update confidential designator here

Files (in Unix context)

A container of data
An “unstructured” array of bytes, nothing more, nothing less

Stored on top of filesystem blocks (for disk-based

filesystems)

Abstraction used by applications and users to store and retrieve data

Version number here VOOO0O ‘ Red Hat

n

Optional section marker

“Bringing them all together...”

__

Update confidential designator here

Userspace

Filesystem Blocks
(4096 Bytes)

Logical Blocks
(4096 Bytes)

Sector
(512 Bytes)

Version number here VOOO0O ‘ Red Hat

Optional section marker Update confidential designator here

|/O operations vs File Operations

» |/O operations (IOPS) > File Operations (OPS)
Storage Unit Commands - File-related operations
95% READ and WRITE - open(), close()

read(), write()

stat(), lseek()

Version number here VOOO0O ‘ Red Hat

Optional section marker

Update confidential designator here

Extra important details...

Physically, any write other than a sector IS NOT ATOMIC
The Read-Modify-Write curse
Torn writes

Storages are usually capable of reading and writing sectors in batches

Version number here VOOO0O ‘ Red Hat

Optional section marker

Update confidential designator here

Object Oriented recap

OOP is not a programming language, it is a programming paradigm
Basically the whole kernel is objected oriented

C doesn’t have OOP-specific support, so we need to use some

different techniques.

Version number here VOOO0O ‘ Red Hat

Update confidential designator here

Virtual File System

The most important subsystem

Optional section marker

Update confidential designator here

The VFS responsibility

All file and filesystem-related interfaces available to userspace and other

kernel subsystems.
Virtually everything is interconnected by the VFS
You read and write from/to network sockets using VFS
Abstracts the internal operations of all filesystems
Most system calls are initially handled by the VFS.

Together with the block layer, we have all necessary abstractions for

user-space to access data in any media using the same generic system calls

Version number here VOOO0O ‘ Red Hat

Optional section marker Update confidential designator here

The common file model

» VFS defines “generic” view for files, filesystems, etc.

» This ensures that accessing any filesystem object can be done via a
generic interface without the need to understand the details of each

specific filesystem.

» Each filesystem though must abstract their internal implementation

to the VFS using such model.

Version number here VOOO0O ‘ Red Hat

Optional section marker

The journey of awrite() syscall

write()

Userspace

sys_write()

Virtual Filesystem

Disclaimer: This is not 100% accurate...

- ext4_file_write()

Update confidential designator here

Filesystem

A

bio()

Block Dev

Version number here VOOOOO

‘ RedHat

Optional section marker

Superblock

Represents a specific

mounted filesystem

Main VFS Abstractions

Inode

Descriptor containing
metadata details related to a

specific file.

Directory Entries

A single componentin a

path (not a directory).

Update confidential designator here

File

An in-memory representation

of an opened file

Version number here VOOO0OO ‘ Red Hat

20

Optional section marker Update confidential designator here

Operations

» Each object provides a “structure” providing a set of operations for

that specific object
» Each filesystem will populate this with their own operations

> Not all operations are mandatory and the VFS provide some generic

ones if the filesystem doesn't need any custom behavior

> Yes you can call these operations “methods”

. . Version number here VOOOOO ‘ Red Hat
Documentation/filesystem/vfs.rst

Optional section marker Update confidential designator here

VFS data structures definitions

Object Operations Location

super_block super_operations include/linux/fs.h
inode inode_operations include/linux/fs.h
dentry dentry_operations include/linux/dcache.h
file file_operations include/linux/fs.h

Version number here VOOO0O ‘ Red Hat

22

Optional section marker

Other important structures

file_system_type (include/linux/fs.h)
mount (fs/mount.h)

vfsmount (include/linux/fs.h)
files_struct (include/linux/fs.h)
fs_struct (include/linux/fs.h)

mnt_namespace (include/linux/fs.h)

Update confidential designator here

Version num ber here VOOOOO

‘ RedHat

23

Optional section marker

The Dentry Cache

dentry object describes components in a path name
Pathname lookups are very expensive, so we cache it.

dentries have no on-disk correspondent, even on native Unix

filesystemes.
Even invalid lookups are cached.

Dentry cache also provides a front end for the inode cache

Update confidential designator here

Version number here VOOOOO

‘ RedHat

Update confidential designator here

A quick look into the
block 1/O layer

25

Optional section marker

>

>

>

Update confidential designator here

Buffers

Every block read from disk storage, is cached in memory for some time.
These blocks are stored in “buffers”

buffer_head struct is used to cache blocks

Version number here VOOOOO

‘ RedHat

26

Optional section marker

Update confidential designator here

struct bioandbvec_iter

Bio - the basic container for I/O within the kernel
Represents every “in-flight” |O operation
A bio describe a SINGLE contiguous storage location.

Each bio is divided in segments - chunks of contiguous memory.

Version number here VOOO0O ‘ Red Hat

Optional section marker

struct bio

struct bioandbvec_iter #2

bio_vec

bio_vec

bio_vec

bio_vec

page

page

page

page

27

Update confidential designator here

List Array

Page Structs

Block Dev

Version number here VOOO0O ‘ Red Hat

28

Optional section marker

Request queues

Each block device keeps its own request queue
Higher level systems add requests to these queues

The device driver grab such requests and submit them to the

hardware

Update confidential designator here

Version number here VOOO0O ‘ Red Hat

29

Optional section marker

Update confidential designator here

|O Schedulers

Do not confuse with CPU schedulers

Decide the order and the time requests are dispatched to the block

device
Most of the time, IO schedulers aim to reduce disk seeks

Linux provides different scheduling algorithms

Version number here VOOO0O ‘ Red Hat

Update confidential designator here

"Free Memory is
wasted memory.”

The Page cache and
writeback mechanism

‘ Red Hat

31

Optional section marker

Linux page cache

Introduced initially in SysVr4 meant to cache only FS data
Linux page cache aims to cache any page-based object
The goal is to minimize disk I/O

milliseconds vs nanoseconds
Temporal locality

Once accessed, data is likely to be accessed again

Update confidential designator here

Version number here VOOOOO

‘ RedHat

32

Optional section marker

>

>

Linux page cache #2

Physical pages in RAM related to physical blocks on disk
Page cache is dynamic
Can grow and consume any free memory

Can shrink and relieve memory pressure if memory is low

Update confidential designator here

Version number here VOOO0O ‘ Red Hat

33

Optional section marker

>

Update confidential designator here

Page cache based WRITES

Page cache writes can be implemented in different ways
No-write - system does not cache write operations
Write-through - Write operations update both cache and disk

Write-back - Write goes to the cache only (Linux does this)

Version number here VOOO0O ‘ Red Hat

Optional section marker Update confidential designator here

Page cache based READS

» Kernel first checks if the requested data is in the page cache

If we do, we have a cache hit and we don't need to go to the
disk

» If not, we have a cache miss.

The kernel will schedule a block |/O operation to request the
data off disk

» Once the datais read, it will now be added to the cache

34

Version number here VOOO0O ‘ Red Hat

35

Optional section marker

Update confidential designator here

Page cache based WRITES #2

write operations write data to the page cache only
Pages in the cache are marked dirty by the write operation

After a determined amount of time and some rules, the pages are

written back to disk.
After return, awrite() call does not guarantee the data is on disk

Applications are responsible for their data integrity, not the kernel.
sync(), fsync(), fdatasync()

System performance is the goal here

Version number here VOOO0O ‘ Red Hat

36

Optional section marker

Update confidential designator here

Cache eviction

If memory is running low (or specified limits are being hit), the kernel

needs to shrink the page cache.
Which blocks should be uncached?

What if there are no ‘clean pages’ in the page cache?

Version number here VOOOOO

‘ RedHat

37

Optional section marker

Update confidential designator here

Cache eviction #2

Linux use a modified LRU, consisting of two lists:
Active and Inactive list

Active list contain “hot” pages and can't be evicted
Pages in the Inactive list are available for cache eviction

Only when a page is accessed while in the inactive list, it can be

“‘promoted” to the active list.

Both lists are balanced. If the active list becomes larger than the

inactive one, items are moved from the active to the inactive list

Version number here VOOOOO

‘ RedHat

Optional section marker Update confidential designator here

The address_space object

» A page in the page cache, may contain multiple non-contiguous
physical disk blocks.

As files need not to be contiguous on disk, this works well.

» Linux uses the address_space object to manage entries in the page
cache and page |/O operations.

By not tying it to specific VFS objects, like the inode, SB, we

enable the page cache to be a generic cache, not usable only
by filesystems.

Version number here VOOO0O ‘ Red Hat

39

Optional section marker

>

>

Update confidential designator here

The address_space object #2

A file mapped in memory, will have a single address_space struct

representing it.

Opposite of VMASs, where we can have several VMASs pointing

to the same file.

It may have many virtual addresses, but it exists only once in

physical memory

Show me some code

Version number here VOOO0O ‘ Red Hat

40

Optional section marker

>

>

Update confidential designator here

address_space operations

Yes, address_space also have different behaviors depending on the

underlying user.
The underlying user may be:

Filesystems, block devices, the buffer_head cache, swap

subsystem.

Version number here VOOOOO

‘ RedHat

41

Optional section marker

Update confidential designator here

Flusher Threads

All storage writes are handled via the page cache
We will talk about DIO next
All writeback is deferred to the “flusher threads”
If data in the page cache is dirty
l.e. newer than their respective disk locations.
The pages will be written back to disk once some conditions are met.

The writeback is handled by flusher threads, which are kworker

threads started on demand as a per-device basis

Version number here VOOO0O ‘ Red Hat

42

Optional section marker

>

Flusher Threads #2

So, when does writeback occurs?
Free memory is smaller than a specific threshold
Dirty data grows older
The user process forces the writeback to disk

sync() syscalls family

Update confidential designator here

Version number here VOOO0O ‘ Red Hat

43

Optional section marker

>

>

Update confidential designator here

Disclaimerll

FILESYSTEMS DON'T CARE ABOUT USER DATA

It is not uncommon for users and developers to assume once a
write() returns, the datais written on disk
Again, itis user’s (or application’s) responsibility to ensure data is safe

Version number here VOOO0O ‘ Red Hat

44

Optional section marker

Update confidential designator here

Direct 1O

From userspace, we can bypass the page cache by using Direct |O

All reads and writes goes from/to user space memory direct
to/from disk using DMA.

This has a big potential to increase performance (and power usage)
But as anything in computer world, there is a trade-off

With DIO applications have more control over 1O

CPU usage is reduced

IO must be aligned with the device's sector sizes

Version number here VOOO0O ‘ Red Hat

45

Optional section marker

Going further

Journalling
COW filesystems
Dynamically allocation of metadata

Extents

Update confidential designator here

Version number here VOOO0OO ‘ Red Hat

Update confidential designator here

Case study:
The Ext2 Filesystem

47

Ext2 Disk Layout

Update confidential designator here

Superblock GDT Block Bitmap Inode Bitmap Inode Table Data Blocks
Block Group #0 Block Group #1 Block Group #2 Block Group #N
Boot Sector Ext2 Filesystem
MBR Partition 1 Partition 2 Partition 3 Partition 4

https://en.wikipedia.org/wiki/Ext2

Version number here VOOOOO

‘ RedHat

Update confidential designator here

Ext2 Disk Layout #2

Reserved Block Inode Inode Data
GDT Blocks Bitmap Bitmap Table Blocks

~. N/ e

———

Group

Descriptor
Table | i

Seescood) osead e ST =TT T === T=Y=T=T=T=T=T=T= !
N -
N _-
N -
Y -
N _-
Y -
\\ -
N

Superblock

Block Group #0 Block Group #1 Block Group #2 .. | Block Group #N

48

https://en.wikipedia.org/wiki/Ext2 Version number here VOO00O ‘ Red Hat

Optional section marker Update confidential designator here

On-disk vs In-memory structures

Object On-disk In-memory
Superblock ext2_super_block ext2_sb_info

Group Descriptor Table ext2_group_desc ext2_group_desc
Block bitmap Raw format Raw format

Inode bitmap Raw format Raw format

Inode table Array of inodes Raw format

Data blocks file_operations include/linux/fs.h

Version number here VOOOOO ‘ Red Hat
https://en.wikipedia.org/wiki/Ext2

50

Optional section marker

On-memory and on-disk structures

ext_sb_info Memory

Update confidential designator here

ext_superblock Block Device

https://en.wikipedia.org/wiki/Ext2

Version number here VOOO0OO ‘ Red Hat

51

Optional section marker

>

>

Initializing an Ext2 Filesystem

As virtually any other filesystem - it is initialized in userspace via

specific tools (mkfs and friends)
Goals:
parse config options

analyze the disk

Update confidential designator here

create and initialize all metadata needed so that the kernel can

properly mount and operate the filesystem

https://en.wikipedia.org/wiki/Ext2

Version number here VOOO0O ‘ Red Hat

52

Optional section marker Update confidential designator here

Ext2 operations (aka methods)

> super_operations -> ext2_sops

» 1inode_operations ->
ext2_file_inode_operations
ext2_dir_operations
ext2_special_operations

» file_operations -> ext2_file_operations

» vm_operations_struct -> ext2_dax_vm_ops (no ops defined for non-dax)

» address_space_operations -> ext2_aops (ext2_dax_aops)

Version number here VOOOOO

https://en.wikipedia.org/wiki/Ext2

‘ RedHat

Optional section marker

Metadata management

» File layout on disk may differ from the user perspective
File data can be scattered everywhere on disk
Even though users just see a contiguous array of bytes
> Files may have holes in them (Sparse files)
> Space management attempts to address 2 main problems
Space fragmentation - big deal for spindles

Time efficiency

53

https://en.wikipedia.org/wiki/Ext2

Update confidential designator here

Version number here VOOOOO

‘ RedHat

54

Optional section marker

Inode creation

» ext2_new_inode () allocate an ext2 disk inode and returns the

address of the corresponding VFS inode object
» file vs directory allocation
» Update block group metadata
» Update superblock
> Initialize inode object
> Initialize quotas, acls, system security

» Pre-fetch the on-disk inode block where the new inode will be written

Update confidential designator here

Version number here VOOO0O ‘ Red Hat

https://en.wikipedia.org/wiki/Ext2

55

Optional section marker

Inode deletion

» Homework

Go and figure out what ext2_free_inode () does

https://en.wikipedia.org/wiki/Ext2

Update confidential designator here

Version number here VOOOOO

& RedHat

56

Optional section marker

>

>

Update confidential designator here

Data Addressing

Files consists of blocks stored within block groups
We can refer to them either as:
Their relative position inside the file (File block num)

Their position within the volume/partition (Logical block num)

Version number here VOOO0O ‘ Red Hat

https://en.wikipedia.org/wiki/Ext2

Optional section marker Update confidential designator here

Data Addressing #2

» Retrieval of a file's logical block number, is a two-step process:

1- Derive from the file offset, the block index containing such
offset

2- Translate the file block number to the corresponding logical
block number

» Ext2 uses a simple data blocks management named Indirect blocks

» The ext2_inode contains an array of 15 block pointers

57

Version number here VOOOOO ‘ Red Hat
https://en.wikipedia.org/wiki/Ext2

58

Optional section marker

Data Addressing #3

Update confidential designator here

Direct Blocks (12) Indirect Blocks (1024) Double Indirect (1IM)

N
N

I \\

Inode Table Inode
1
2
3
4
5
12
13
14
15

https://en.wikipedia.org/wiki/Ext2#Inodes

Triple Indirect (1G)

Version number here VOOO0OO ‘ Red Hat

59

Optional section marker

Update confidential designator here

Block allocation

ext2_get_block() and ext2_new_blocks()
Initially, attempts to find if the block already exists
If not, allocate a new one (or several ones)

The allocator tries to reduce fragmentation, by allocating blocks as

close as possible to the last already allocated block.

The FS also does pre-allocation, by anticipating next writes beyond

the first block requested.

Ext2 allocator is a bit smarter now, and it tries to allocate blocks in

batches
Version number here VOOOOO ‘ Red Hat

https://en.wikipedia.org/wiki/Ext2

60

Optional section marker Update confidential designator here

Data deletion

» Data blocks must be reclaimed once a file is deleted or truncated
» We can also ‘leak’ data blocks the same way we leak memory
» Homework

Go read what ext2_truncate_blocks() and ext2_free_blocks() do

Version number here VOOOOO

https://en.wikipedia.org/wiki/Ext2

‘ RedHat

Update confidential designator here

Extra Mile:
ToyFS

62

Optional section marker

Overview

» Simple filesystem inspired on Steve Pate's UXFS
» Fixed 512 blocks of 2048 bytes (total space IMiB)

> Implements fundamental filesystem operations

https://github.com/linuxtoyfs

Update confidential designator here

Version number here VOOO0O ‘ Red Hat

Optional section marker

Update confidential designator here

On-disk and In-memory structures

Object Block
Superblock #0
Inode list #1

Block bitmap #2
Data blocks #3 to #511

Directory entry | N/A

63

https://github.com/toyfs/toyfs/README.md

On-disk
tfs_dsb
tfs_dinode
Raw format
User data

tfs_dentry

In-memory
tfs_fs_info
tfs_inode_info
Raw format
User data

tfs_dentry

Version number here VOOOOO

‘ RedHat

Update confidential designator here

Disk layout

Superblock Inode Block Block Bitmap Data Blocks
{10 K 15N I I I O 0 O I B A 0

7
&

Block size Filesystem Size
2048 Bytes MiB

Partition #1 Partition #2 Partition #3 Partition #N

64

Version number here VOOOOO ‘ Red Hat
https://github.com/toyfs/toyfs/README.md

65

Optional section marker

O U hNWN =0

https://github.com/toyfs/

Inode

ToyFS data addressing

Data Blocks (7)

Y

Update confidential designator here

Block bitmap

Version number here VOOOOO

‘ RedHat

Thank you

Red Hat is the world’s leading provider of enterprise
open source software solutions. Award-winning
support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

2|

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

