
Update confidential designator here

Version number here V00000

Filesystem and Storage
Subsystems

1

Update confidential designator here

Version number here V00000

Agenda

2

Overview ▸ Introduction to storage and block devices
▸ Virtual File system
▸ The Block I/O Layer
▸ Process Address Space
▸ Page cache and Page Writeback
▸ Case study - ToyFS filesystem

Update confidential designator here

Version number here V00000

3

What is a File?

Update confidential designator here

Version number here V00000

4

What is a
Filesystem?

Update confidential designator here

Version number here V00000

5

Introduction

Update confidential designator here

Version number here V00000

Optional section marker

6

▸ Storage devices are accessible through sector/block addresses

･ HDDs, SSDs, DVD/Blu-Ray etc

▸ Using specific communication protocols to access

･ IDE, SCSI, SATA, SAS, etc

What are block devices?

Update confidential designator here

Version number here V00000

Optional section marker

7

▸ Storage’s smallest addressable unit

▸ Come by many names

･ Sectors, physical block size, I/O blocks…

▸ May come in different sizes depending on the media

･ 512 Bytes

･ 4096 Bytes - 512e and 4KN

･ 2KiB - 64Kib (Blu-Rays)

The sector as the fundamental unit

Update confidential designator here

Version number here V00000

Optional section marker

8

▸ Aggregation of one or more consecutive physical sectors

▸ Smallest “logical” addressable unit for logical volumes

･ RAID arrays

･ LVMs volumes (depending on volume type)

･ other volume managers.

Logical Blocks

Update confidential designator here

Version number here V00000

Optional section marker

9

▸ Aggregation of one or more consecutive physical blocks, depending

on the underlying media

▸ Smallest “logical” addressable unit for:

･ Filesystems

･ User applications

Filesystem Blocks

Update confidential designator here

Version number here V00000

Optional section marker

10

▸ A container of data

･ An “unstructured” array of bytes, nothing more, nothing less

･ Stored on top of filesystem blocks (for disk-based

filesystems)

▸ Abstraction used by applications and users to store and retrieve data

Files (in Unix context)

Update confidential designator here

Version number here V00000

Optional section marker

11

“Bringing them all together…”

file_01

Sector
(512 Bytes)

Logical Blocks
(4096 Bytes)

Filesystem Blocks
(4096 Bytes)

Userspacefile_02

Update confidential designator here

Version number here V00000

Optional section marker

12

▸ I/O operations (IOPS)

･ Storage Unit Commands

･ 95% READ and WRITE

I/O operations vs File Operations

▸ File Operations (OPS)

･ File-related operations

･ open(), close()

･ read(), write()

･ stat(), lseek()

Update confidential designator here

Version number here V00000

Optional section marker

13

▸ Physically, any write other than a sector IS NOT ATOMIC

▸ The Read-Modify-Write curse

▸ Torn writes

▸ Storages are usually capable of reading and writing sectors in batches

Extra important details…

Update confidential designator here

Version number here V00000

Optional section marker

14

▸ OOP is not a programming language, it is a programming paradigm

▸ Basically the whole kernel is objected oriented

▸ C doesn’t have OOP-specific support, so we need to use some

different techniques.

Object Oriented recap

Update confidential designator here

Version number here V00000

15

Virtual File System
The most important subsystem

Update confidential designator here

Version number here V00000

Optional section marker

16

▸ All file and filesystem-related interfaces available to userspace and other

kernel subsystems.

▸ Virtually everything is interconnected by the VFS

･ You read and write from/to network sockets using VFS

▸ Abstracts the internal operations of all filesystems

▸ Most system calls are initially handled by the VFS.

▸ Together with the block layer, we have all necessary abstractions for

user-space to access data in any media using the same generic system calls

The VFS responsibility

Update confidential designator here

Version number here V00000

Optional section marker

17

▸ VFS defines “generic” view for files, filesystems, etc.

▸ This ensures that accessing any filesystem object can be done via a

generic interface without the need to understand the details of each

specific filesystem.

▸ Each filesystem though must abstract their internal implementation

to the VFS using such model.

The common file model

Update confidential designator here

Version number here V00000

Optional section marker

18

The journey of a write() syscall

write() sys_write() ext4_file_write() bio()

Userspace Virtual Filesystem Filesystem Block Dev

Disclaimer: This is not 100% accurate…

Update confidential designator here

Version number here V00000

Main VFS Abstractions

Optional section marker

19

Represents a specific

mounted filesystem

Superblock

An in-memory representation

of an opened file

File

A single component in a

 path (not a directory).

Directory Entries

Descriptor containing

metadata details related to a

specific file.

Inode

Update confidential designator here

Version number here V00000

Optional section marker

20

Documentation/filesystem/vfs.rst

▸ Each object provides a “structure” providing a set of operations for

that specific object

▸ Each filesystem will populate this with their own operations

▸ Not all operations are mandatory and the VFS provide some generic

ones if the filesystem doesn’t need any custom behavior

▸ Yes you can call these operations “methods”

Operations

Update confidential designator here

Version number here V00000

Optional section marker

21

VFS data structures definitions

Object Operations Location

super_block super_operations include/linux/fs.h

inode inode_operations include/linux/fs.h

dentry dentry_operations include/linux/dcache.h

file file_operations include/linux/fs.h

Update confidential designator here

Version number here V00000

Optional section marker

22

▸ file_system_type (include/linux/fs.h)

▸ mount (fs/mount.h)

▸ vfsmount (include/linux/fs.h)

▸ files_struct (include/linux/fs.h)

▸ fs_struct (include/linux/fs.h)

▸ mnt_namespace (include/linux/fs.h)

Other important structures

Update confidential designator here

Version number here V00000

Optional section marker

23

The Dentry Cache

▸ dentry object describes components in a path name

▸ Pathname lookups are very expensive, so we cache it.

▸ dentries have no on-disk correspondent, even on native Unix

filesystems.

▸ Even invalid lookups are cached.

▸ Dentry cache also provides a front end for the inode cache

Update confidential designator here

Version number here V00000

24

A quick look into the
block I/O layer

Update confidential designator here

Version number here V00000

Optional section marker

25

▸ Every block read from disk storage, is cached in memory for some time.

▸ These blocks are stored in “buffers”

▸ buffer_head struct is used to cache blocks

Buffers

Update confidential designator here

Version number here V00000

Optional section marker

26

▸ Bio - the basic container for I/O within the kernel

▸ Represents every “in-flight” IO operation

▸ A bio describe a SINGLE contiguous storage location.

▸ Each bio is divided in segments - chunks of contiguous memory.

struct bio and bvec_iter

Update confidential designator here

Version number here V00000

Optional section marker

27

struct bio and bvec_iter #2

page page page page

bio_vec bio_vec bio_vec bio_vecstruct bio

Block Dev

Page Structs

List Array

c

Update confidential designator here

Version number here V00000

Optional section marker

28

▸ Each block device keeps its own request queue

▸ Higher level systems add requests to these queues

▸ The device driver grab such requests and submit them to the

hardware

Request queues

Update confidential designator here

Version number here V00000

Optional section marker

29

▸ Do not confuse with CPU schedulers

▸ Decide the order and the time requests are dispatched to the block

device

▸ Most of the time, IO schedulers aim to reduce disk seeks

▸ Linux provides different scheduling algorithms

IO Schedulers

Update confidential designator here

Version number here V00000

30

“Free Memory is
wasted memory.”

The Page cache and
writeback mechanism

Update confidential designator here

Version number here V00000

Optional section marker

31

▸ Introduced initially in SysVr4 meant to cache only FS data

▸ Linux page cache aims to cache any page-based object

▸ The goal is to minimize disk I/O

･ milliseconds vs nanoseconds

▸ Temporal locality

･ Once accessed, data is likely to be accessed again

Linux page cache

Update confidential designator here

Version number here V00000

Optional section marker

32

▸ Physical pages in RAM related to physical blocks on disk

▸ Page cache is dynamic

･ Can grow and consume any free memory

･ Can shrink and relieve memory pressure if memory is low

Linux page cache #2

Update confidential designator here

Version number here V00000

Optional section marker

33

▸ Page cache writes can be implemented in different ways

･ No-write - system does not cache write operations

･ Write-through - Write operations update both cache and disk

･ Write-back - Write goes to the cache only (Linux does this)

Page cache based WRITES

Update confidential designator here

Version number here V00000

Optional section marker

34

▸ Kernel first checks if the requested data is in the page cache

･ If we do, we have a cache hit and we don’t need to go to the

disk

▸ If not, we have a cache miss.

･ The kernel will schedule a block I/O operation to request the

data off disk

▸ Once the data is read, it will now be added to the cache

Page cache based READS

Update confidential designator here

Version number here V00000

Optional section marker

35

▸ write operations write data to the page cache only

▸ Pages in the cache are marked dirty by the write operation

▸ After a determined amount of time and some rules, the pages are

written back to disk.

▸ After return, a write() call does not guarantee the data is on disk

▸ Applications are responsible for their data integrity, not the kernel.

･ sync(), fsync(), fdatasync()

▸ System performance is the goal here

Page cache based WRITES #2

Update confidential designator here

Version number here V00000

Optional section marker

36

▸ If memory is running low (or specified limits are being hit), the kernel

needs to shrink the page cache.

▸ Which blocks should be uncached?

▸ What if there are no ‘clean pages’ in the page cache?

Cache eviction

Update confidential designator here

Version number here V00000

Optional section marker

37

▸ Linux use a modified LRU, consisting of two lists:

▸ Active and Inactive list

▸ Active list contain “hot” pages and can’t be evicted

▸ Pages in the Inactive list are available for cache eviction

▸ Only when a page is accessed while in the inactive list, it can be

“promoted” to the active list.

▸ Both lists are balanced. If the active list becomes larger than the

inactive one, items are moved from the active to the inactive list

Cache eviction #2

Update confidential designator here

Version number here V00000

Optional section marker

38

▸ A page in the page cache, may contain multiple non-contiguous

physical disk blocks.

･ As files need not to be contiguous on disk, this works well.

▸ Linux uses the address_space object to manage entries in the page

cache and page I/O operations.

･ By not tying it to specific VFS objects, like the inode, SB, we

enable the page cache to be a generic cache, not usable only

by filesystems.

The address_space object

Update confidential designator here

Version number here V00000

Optional section marker

39

▸ A file mapped in memory, will have a single address_space struct

representing it.

･ Opposite of VMAs, where we can have several VMAs pointing

to the same file.

･ It may have many virtual addresses, but it exists only once in

physical memory

▸ Show me some code

The address_space object #2

Update confidential designator here

Version number here V00000

Optional section marker

40

▸ Yes, address_space also have different behaviors depending on the

underlying user.

▸ The underlying user may be:

･ Filesystems, block devices, the buffer_head cache, swap

subsystem.

address_space operations

Update confidential designator here

Version number here V00000

Optional section marker

41

▸ All storage writes are handled via the page cache

･ We will talk about DIO next

▸ All writeback is deferred to the “flusher threads”

▸ If data in the page cache is dirty

･ i.e. newer than their respective disk locations.

▸ The pages will be written back to disk once some conditions are met.

▸ The writeback is handled by flusher threads, which are kworker

threads started on demand as a per-device basis

Flusher Threads

Update confidential designator here

Version number here V00000

Optional section marker

42

▸ So, when does writeback occurs?

･ Free memory is smaller than a specific threshold

･ Dirty data grows older

･ The user process forces the writeback to disk

･ sync() syscalls family

Flusher Threads #2

Update confidential designator here

Version number here V00000

Optional section marker

43

FILESYSTEMS DON’T CARE ABOUT USER DATA

▸ It is not uncommon for users and developers to assume once a
write() returns, the data is written on disk

▸ Again, it is user’s (or application’s) responsibility to ensure data is safe

Disclaimer!!

Update confidential designator here

Version number here V00000

Optional section marker

44

▸ From userspace, we can bypass the page cache by using Direct IO

･ All reads and writes goes from/to user space memory direct

to/from disk using DMA.

▸ This has a big potential to increase performance (and power usage)

･ But as anything in computer world, there is a trade-off

▸ With DIO applications have more control over IO

▸ CPU usage is reduced

▸ IO must be aligned with the device’s sector sizes

Direct IO

Update confidential designator here

Version number here V00000

Optional section marker

45

▸ Journalling

▸ COW filesystems

▸ Dynamically allocation of metadata

▸ Extents

Going further

Update confidential designator here

Version number here V00000

46

Case study:
The Ext2 Filesystem

Update confidential designator here

Version number here V00000

47

https://en.wikipedia.org/wiki/Ext2

Ext2 Disk Layout

Partition 1 Partition 2 Partition 3 Partition 4MBR

Block Group #0 Block Group #1 Block Group #2

Ext2 FilesystemBoot Sector

Block Group #N

Superblock

…

GDT Block Bitmap Inode Bitmap Inode Table Data Blocks

Update confidential designator here

Version number here V00000

48

https://en.wikipedia.org/wiki/Ext2

Ext2 Disk Layout #2

Block Group #0 Block Group #1 Block Group #2 Block Group #N…

Superblock

Group
Descriptor

Table

Reserved
GDT Blocks

Block
Bitmap

Data
Blocks

Inode
Bitmap

Inode
Table

Update confidential designator here

Version number here V00000

Optional section marker

49

https://en.wikipedia.org/wiki/Ext2

On-disk vs In-memory structures

Object On-disk In-memory

Superblock ext2_super_block ext2_sb_info

Group Descriptor Table ext2_group_desc ext2_group_desc

Block bitmap Raw format Raw format

Inode bitmap Raw format Raw format

Inode table Array of inodes Raw format

Data blocks file_operations include/linux/fs.h

Update confidential designator here

Version number here V00000

Optional section marker

50

https://en.wikipedia.org/wiki/Ext2

On-memory and on-disk structures

ext_superblock

ext_sb_info

Block Device

Memory

Update confidential designator here

Version number here V00000

Optional section marker

51

https://en.wikipedia.org/wiki/Ext2

Initializing an Ext2 Filesystem

▸ As virtually any other filesystem - it is initialized in userspace via

specific tools (mkfs and friends)

▸ Goals:

･ parse config options

･ analyze the disk

･ create and initialize all metadata needed so that the kernel can

properly mount and operate the filesystem

Update confidential designator here

Version number here V00000

Optional section marker

52

https://en.wikipedia.org/wiki/Ext2

▸ super_operations -> ext2_sops

▸ inode_operations ->

･ ext2_file_inode_operations

･ ext2_dir_operations

･ ext2_special_operations

▸ file_operations -> ext2_file_operations

▸ vm_operations_struct -> ext2_dax_vm_ops (no ops defined for non-dax)

▸ address_space_operations -> ext2_aops (ext2_dax_aops)

Ext2 operations (aka methods)

Update confidential designator here

Version number here V00000

Optional section marker

53

https://en.wikipedia.org/wiki/Ext2

▸ File layout on disk may differ from the user perspective

･ File data can be scattered everywhere on disk

･ Even though users just see a contiguous array of bytes

▸ Files may have holes in them (Sparse files)

▸ Space management attempts to address 2 main problems

･ Space fragmentation - big deal for spindles

･ Time efficiency

Metadata management

Update confidential designator here

Version number here V00000

Optional section marker

54

https://en.wikipedia.org/wiki/Ext2

▸ ext2_new_inode() allocate an ext2 disk inode and returns the

address of the corresponding VFS inode object

▸ file vs directory allocation

▸ Update block group metadata

▸ Update superblock

▸ Initialize inode object

▸ Initialize quotas, acls, system security

▸ Pre-fetch the on-disk inode block where the new inode will be written

Inode creation

Update confidential designator here

Version number here V00000

Optional section marker

55

https://en.wikipedia.org/wiki/Ext2

▸ Homework

･ Go and figure out what ext2_free_inode() does

Inode deletion

Update confidential designator here

Version number here V00000

Optional section marker

56

https://en.wikipedia.org/wiki/Ext2

▸ Files consists of blocks stored within block groups

▸ We can refer to them either as:

･ Their relative position inside the file (File block num)

･ Their position within the volume/partition (Logical block num)

Data Addressing

Update confidential designator here

Version number here V00000

Optional section marker

57

https://en.wikipedia.org/wiki/Ext2

▸ Retrieval of a file’s logical block number, is a two-step process:

･ 1 - Derive from the file offset, the block index containing such

offset

･ 2- Translate the file block number to the corresponding logical

block number

▸ Ext2 uses a simple data blocks management named Indirect blocks

▸ The ext2_inode contains an array of 15 block pointers

Data Addressing #2

Update confidential designator here

Version number here V00000

Optional section marker

58

https://en.wikipedia.org/wiki/Ext2#Inodes

Data Addressing #3

Direct Blocks (12) Indirect Blocks (1024) Double Indirect (1M)

Triple Indirect (1G)

1
2
3
4
5

12
13
14
15

InodeInode Table

Update confidential designator here

Version number here V00000

Optional section marker

59

https://en.wikipedia.org/wiki/Ext2

▸ ext2_get_block() and ext2_new_blocks()

･ Initially, attempts to find if the block already exists

･ If not, allocate a new one (or several ones)

▸ The allocator tries to reduce fragmentation, by allocating blocks as

close as possible to the last already allocated block.

▸ The FS also does pre-allocation, by anticipating next writes beyond

the first block requested.

▸ Ext2 allocator is a bit smarter now, and it tries to allocate blocks in

batches

Block allocation

Update confidential designator here

Version number here V00000

Optional section marker

60

https://en.wikipedia.org/wiki/Ext2

▸ Data blocks must be reclaimed once a file is deleted or truncated

▸ We can also ‘leak’ data blocks the same way we leak memory

▸ Homework

･ Go read what ext2_truncate_blocks() and ext2_free_blocks() do

Data deletion

Update confidential designator here

Version number here V00000

61

Extra Mile:
ToyFS

Update confidential designator here

Version number here V00000

Optional section marker

62

https://github.com/linuxtoyfs

▸ Simple filesystem inspired on Steve Pate's UXFS

▸ Fixed 512 blocks of 2048 bytes (total space 1MiB)

▸ Implements fundamental filesystem operations

Overview

Update confidential designator here

Version number here V00000

Optional section marker

63

https://github.com/toyfs/toyfs/README.md

On-disk and In-memory structures

Object Block On-disk In-memory

Superblock #0 tfs_dsb tfs_fs_info

Inode list #1 tfs_dinode tfs_inode_info

Block bitmap #2 Raw format Raw format

Data blocks #3 to #511 User data User data

Directory entry N/A tfs_dentry tfs_dentry

Update confidential designator here

Version number here V00000

64

https://github.com/toyfs/toyfs/README.md

Disk layout

Partition #1 Partition #2 Partition #3 Partition #N…

Superblock Data BlocksInode Block Block Bitmap

Block size
2048 Bytes

0 21 3 511

Filesystem Size
1MiB

Update confidential designator here

Version number here V00000

Optional section marker

65

https://github.com/toyfs/

ToyFS data addressing

Data Blocks (7)

0
1
2
3
4
5
6

Inode Block bitmap

Update confidential designator here

Version number here V00000

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

66

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

