Kernel debugging
approaches1/2

Live data

Vratislav Bendel
Principal Software Maintenance Engineer

Agenda

What we'll
cover today:

Userspace data

system monitoring and process tracing

Perf

The performance analysis swiss-knife

Kernel tracing

trace-cmd, perf probe

Code injections
systemtap, eBPF

Mindset

Methodology matters

Mindset

v

Mindset

How to think when tackling a problem

1) Define the problem and form a hypothesis
2) Determine how to verify the hypothesis - what data are needed
3) Use adequate tool to collect the data
4) Analyze the data and verify the hypothesis
.. Finished?
Yes -> Well done!

No -> Repeat from 1)

System live data

The bread and butter

System live data

System live data

Stats and infos

Lot of information are readable directly from kernel via VFS under /proc
(procfts), /sys (sysfs), /sys/kernel/debug (debugfs). Userspace

monitoring tools tend to get information from these interfaces.
» /proc/meminfo, ../slabinfo, ../buddyinfo, ../zoneinfo
» /proc/sched_debug

» /sys/devices/...

System live data

System live data

Stats monitoring

From system administration perspective, it's always recommended to
periodically collect system data and save them to permanent storage, in

order to inspect historical statistics whenever needed.
There are many tools that collect such information:

> Simple: sysstat (sar), collect], nmon, atop
> More complex: Performance Co-Pilot, Prometheus

» Data visualization: Graphana

» and more...

Process tracing

user <-> kernel boundary

Process tracing

>

>

>

Process tracing

strace

Tracing syscall invocations
Significant overhead
My favourite flags:

strace -fttTxCy -o <out> <comm>

Process tracing

>

>

Process tracing

ltrace

Tracing library function calls (glibc, ...)

Works similarly as strace, even has similar flags

Perf

The performance analysis swiss-knife

Perf

Perf

What s it?

Collects aggregate data points for specific “events” to form statistics.
> #perflist - List available events
» Hardware events

Depend on specific HW

Performance Monitoring Unit [PMU] counters

» Software events

Kernel stats & trace events (*)

(*) Kernel trace events are further covered later in this lecture

Perf

Perf

perf stat

perf stat [-e event] [program]
Collects and outputs simple aggregates of the specified events

Useful for general performance analysis / troubleshooting

Mindset hint: When troubleshooting performance, there should always
be a “‘good” and “bad” example, or at least a “good” target that is

realistic, so you may compare which adjustments have positive effect.

Perf

Perf

perf record

» #perfrecord[-a][-g][-- program]

Collects “cycles” event: Programs PMU counter(s) to periodically
interrupt the CPU and record the RIP and other data.

» Hint: System-wide perf profile

perf record -ag —- sleep X

Perf

Perf

perf report

» #perfreport[-i perfdata]

Perf-report command is used to inspect perf.data previously recorded by
perf-record command. It has various options how to “look” at the

recorded data.
» [--sort=...] - a "group-by” query model
> [--time] - inspect only specific timeslice

» [--no-children] - disable “graph aggregation”

Perf

Perf

perf.data analysis on another machine

To inspect perf.data on another machine, you want to have symbols from
the machine where the data were recorded.

» # perf archive

Generates a perf.data.tar[.bz2|.xz] archive containing symbol
map for data that were recorded in ~/.debug folder.

Does NOT contain the actual data

Unpack this data to local machine:

rm -rf ~/.debug/* && tar xf perf.data.tar.xz -C ~/.debug/

You may also use perf-report’s “--kallsyms” option to supply kernel symbols

Perf

Perf

When to use perf?

Useful for:

» “Whatis the kernel doing?” - analyzing %sys CPU usage

» Performance profiling for applications, workloads or whole systems
Tuning

Troubleshooting

Kernel tracing

Almost “breakpoints”

Kernel tracing

Kernel tracing
What is it?

Kernel source code contains defined “trace points”, also known as “events”.
These can be dynamically enabled on live kernel to log data whenever

execution passes the place in source code where the trace point is defined.

Uses sync_core() synchronization mechanism to live-patch kernel execution

machine code - replaces designated places with int3 instruction.

20

Kernel tracing

Kernel tracing

Trace event definition

» jnclude/linux/tracepoint.h

Macro API definitions

- register_trace_##name(void (*probe)(data_proto), void *data)

» kernel/trace/*

- Various tracepoint definitions

21

Kernel tracing

Kernel tracing
Control interface (VFS)

Tracing subsystem control built on VFS mounted at

» /sys/kernel/debug/tracing
» echo 1|0 > .../tracing/events/<group>/<event>/enabled
» echo 1|0 > .../tracing/tracing_on

» cat.../tracing/trace

» and much much more...

22

Kernel tracing

Kernel tracing

trace-cmd

The trace-cmd tool is an efficient to use command-line wrapper to control

kernel tracing interface via single-line commands.

v

trace-cmd list - list all events

v

trace-cmd record [-e event] [-o output_file]

Default output: . /trace.dat”

v

trace-cmd report [-iinput_file]

v

Hint: Write up post-processing parsers for trace-cmd-report output.

23

Kernel tracing

Kernel tracing

complex tracers

Kernel tracing subsystem features several complex tracers. Effectively
these tracers are simply groups of specific events and can be enabled

alongside any other events.
» # trace-cmd record [-p tracer]

Example: function_graph, osnoise

» Beware of trace-buffer overflow, especially with function_graph tracer!

Hint: Control buffer size or write-out frequency via ‘-b" and *-s'’

24

Kernel tracing

Kernel tracing
perf probe

Custom tracepoints can be defined via .../tracing/kprobe_events
The perf-probe command can be used as a wrap-up:
» # perf probe [-m module] [-a probe_definition] [-d probe_name]

Probe definition syntax: # man perf probe

» Then you can enable the probe as any other tracing event

Code injections

Absolute control

26

Code injections

Code injections
Concept

Tracing has the benefit of being relatively lightweight, but generally
provides only read-only capabilities without any logic. Dynamic code

patching can be used for even more complex adjustments - you can add
logic or even modify live data.

Primary tools to achieve this are:

> Systemtap
» eBPF (extended Berkeley Packet Filter)

27

Code injections

Code injections
Systemtap

Scripting language to create custom complex probes

Many pre-implemented library functions and probes (ref. tapsets)

Can embed direct C-lang code (you can pretty much modify kernel :))
Compiles a kernel module

Relatively heavy-weight

manstap - manual entrypoint

28

Code injections

Code injections

Systemtap

» Scripting language to create custom co

» Many pre-implemented library fnctions
» Can embeddirect C-la

» Compiles a

Relatively

v an'stap -manual entrypoint

robes
probes (ref. tapsets)

pretty much modify kernel :))

29

Code injections

v

v

v

v

Code injections
eBPF

Works on kprobes, similar as kernel tracing
More lightweight than systemtap (no kernel module)
Existing pre-implemented eBPF scripts - /usi/share/bpftrace/tools

Commonly used nowadays in kernel-bypass mechanisms (ex. DPDK)

vy}
Q)
2
0
=)
=+
=3
(0]
—+
(o)
C
=)
C
X
N
(1)
=
2
®

Thank you

Red Hat is the world’s leading provider of enterprise
open source software solutions. Award-winning support,
training, and consulting services make Red Hat a trusted
adviser to the Fortune 500.

m linkedin.com/company/red-hat m facebook.com/redhatinc

E youtube.com/user/RedHatVideos twitter.com/RedHat

‘ Red Hat

