Process
Management

Lesson O3

Fall2025 FIMU

Rado Vrbovsky
<rvrbovsk@redhat.com>



Lesson 04 - Overview

User Point of View
Kernel Point of View
Syscalls

Process Scheduling

RedHat




Process From
User's Point of View




What is a process?

oo ) RedHat



PID:

What is a process?

Code
(Text)

Thread(s)

Heap

Stack

File

Descriptors

Sockets

Version num ber here V00000 ‘ RedHat



PID:

What is a process?

Code File
Thread(s) Heap Stack : Sockets
(Text) Descriptors
/ / / \ \\
Instr. A Free space to 4 func_a ret address 0: "/dev/ttySe" 0: unix
Instr. B use. func_b local vars 1: "/home/rado” 1: ip
Instr. C Usually used by func_b ret address 2: "readme.txt" .
malloc. func_c local vars
func_c ret address

Version number here VOOOOO

& RedHat



Process address space - Isolation

Process A S g > Shared K 1
Address Space 3 <] 2 Libraries erne
0 Top of Memory
Process B S g = Shared K 1
Address Space 3 o o Libraries erne
0 Top of Memory

Version number here VOO00O ‘ RedHat



Process A Shared K 1
Address Space Libraries erne

Process B Shared K 1
Address Space Libraries erne

Space

Process and kernel address space

Kernel Address I I I

Shared
Libraries

Kernel private
data

PAGE_OFFSET

Top of Memory

Version number here VOOOOO

‘ Red Hat



Syscalls

App

libC

A 4

syscall

Y

syscall

Version number here VOOOOO ‘ Red Hat



Syscalls

Process Management e FS Management e Interprocess e Memory Management
o fork o open o kill o brk
o exec o read o signal ©  mmap
o clone o write o pipe ©  munmap
o wait o close o socket o
o Kkill o s‘Fat o msgget
0 exit S unlink A
o nice . Z zgﬁgg
o getpid o
o ...
Similar to a library call
Called by number, not by name of the function
Operations requiring privileged access rights are executed in a safe environment
Over 500 syscalls

Version number here VOOOOO ‘ Red Hat



0x3000

0x2000

0x1000

Process Break

brk(0x2800); __

\
/ sbrk(0x800) ; —\—<

e Break - pointer to end of process data
segment (heap)

e int brk(void *addr);
e void *sbrk(intptr_t increment);

e Don't use brk directly, use malloc

0x3000

0x2000

0x1000

‘ Red Hat



Process Creation
Step 1. Cloning

Process A Process B

()%404

° Process A is the parent process
e  Process Bis the child process
e  Both processes are exactly the same (stack,

heap, code, file descriptors ...), except the PID,
lock states and pending signals

Version number here VOOOOO ‘ Red Hat

The BSD Daemon as drawn by John Lasseter, source wikipedia.



Process Creation
Step 1. Cloning Step 2. Execve

Process A Process B Process B Process B

()%404

A,
()onoexd
A

Process A is the parent process e  Anew binary image is loaded from disk and
Process B is the child process completely overwrites address space of the original
Both processes are exactly the same (stack, process

heap, code, file descriptors ...), except the PID

Version number here VOOOOO ‘ Red Hat



Process Creation

#include <stdio.h>
#include <unistd.h>

int main(void) {

int pid;
pid = fork();
if (pid == 0)

printf("I am a child!\n");
else

printf("I am the parent!\n");
return 0;

Parent and child are separate processes

They both continue executing code on the same
instruction (in this example the if statement)

WhatIf ...

Version number here VOOOOO

& RedHat



Process Creation

e  Parent and child are separate processes

#include <stdio.h> e  They both continue executing code on the same
#include <unistd.h> instruction (in this example the if statement)
int main(void) { WhatIf ...

int pid;

e  You could define what is the child’s entry point
pid = fork(); (what function should be executed after fork)
if (pid == 0) e  Parent and child could share pieces of execution

printf("I am a child!\n"); context (file descriptors, heap, stack, ...)
else

printf("I am the parent!\n");

return 0;

Version number here VOOOOO ‘ Red Hat



#include <stdio.h>

Process Creation

#include <unistd.h>
int main(void) {
int pid;
[ ]
pid = fork();
if (pid == 0) ®
printf("I am a child!\n");
else
printf("I am the parent!\n");
return 0;

Parent and child are separate processes
They both continue executing code on the same
instruction (in this example the if statement)

WhatIf ...

You could define what is the child’s entry point
(what function should be executed after fork)
Parent and child could share pieces of execution
context (file descriptors, heap, stack, ...)

clone()

Leveraged by the pthread library to create
new threads inside processes

Version number here VOOOOO

& RedHat



Process Synchronization

- Signals

#define SIGHUP
#define SIGKILL
#define SIGSEGV
#define SIGTERM
#define SIGSTOP

L task->sighand->

> sys_kill(pid_t pid, int sig)

1
9
11
15
19

->action[sig - 1].sa.sa_handler



Process Synchronization - Signals

#define SIGHUP 1

#define SIGKILL 9
#define SIGSEGV 11
#define SIGTERM 15
#define SIGSTOP 19

L task->sighand->
->action[sig - 1].sa.sa_handler

e There are 64 signals defined in Linux
e Signals are outdated,
use sigactioninstead. Or ..

& RedHat




Process Synchronization - Overview

Message Queues

e msgget()
e msgsnd()
e msgrcv()
e msgctl()

Shared Memory

e shmget()
e shmat()
e shmdt()
e shmctl()
Semaphores

e semget()
e semop()
e semctl()

UOI1e2IUNWIWOD) S$2201dJa1U| A WS1SAS - odInsAs

Sockets

e socket()
bind()
listen()
accept()
connect ()
send* ()
recv*()
shutdown()
close()

FIFOs
e mkfifo()
e mknod()

Signals

o kill()

e sigaction()

e signal()

e sigprocmask()

e sigpending()
Pipes

e pipe()

o pipe2()



Process Niceness

Default value is @
Use renice to change
Except nice values, there is also priority value for each process

N
o

)

Low priority

High priority

<

N
O

1
Q
XL
(7]
=



Process States and Transitions

(R) Running - Process is being executed by the CPU

(S) Interruptible sleep - Process is waiting for an event, resource to be available or completion of a
syscall. Process reacts to signals and can be killed

(D) Uninterruptible sleep - Process is sleeping in an uninterruptible wait, usually waiting for a block
device 10. Does not react to signals and cannot be killed

(Z) Zombie - Process has finished its execution of code, but its parent process has not collected its
exit code using the wait() syscall

(T) Traced/Stopped - Process is being traced or stopped.



Process From
Kernel's Point of View




PID:

What is a process?

Code
(Text)

Thread(s)

Heap

Stack

File

Descriptors

Sockets

struct task_struct - Task descriptor

Version num ber here V00000 ‘ RedHat



Task Descriptor/Task Structure

e One structure per user space or kernel thread

o Every process has at least one thread
e Large Clanguage structure

o Contains all information about thread

o  Scheduling information, memory mapping, signals, files, sockets, locks, paging tables, ...
e Macro current

o  Architecture specific implementation

o Points to the task_struct that is being currently executed on that CPU (e.g. process
called a syscall)

o Does not have to be a user space process

Version number here VOOOOO ‘ Red Hat



struct task_struct

struct task_struct {

pid_t pid; /* Thread ID */
pid_t tgid; /* Process ID */

e task_struct.pidisthe threadID!

e task_struct.gidisthe processID!
o IF (pid == tgid) — main thread

e Do notaccess pid and tgid directly, use
o task_pid_nr(current)
o task_tgid_nr(current)



struct task_struct {

struct task_struct __

struct task_struct - family

rcu *parent; /* Parent process */
struct list_head children; /* List of children */
struct list_head sibling; /* List of sibling */
struct list_head tasks; /* Double linked list of all tasks */
i - e e
3 2 & &
8 0] 8 o)
0 —> % 0 %
U Y, U U
Y o O O
< z @) N

& RedHat



struct task_struct - family

struct task_struct {

struct task_struct __rcu *parent; /* Parent process */

struct list_head children; /* List of children */

struct list_head sibling; /* List of sibling */

struct list_head tasks; /* Double linked list of all tasks */

#define for_each_process(p)
#define for_each_thread(p, t)

#define for_each_process_thread(p, t)



struct task_struct - state

struct task_struct {

unsigned int

#define
#define
#define
#define
#define
#define

#aéfine

TASK_RUNNING
TASK_INTERRUPTIBLE
TASK_UNINTERRUPTIBLE

EXIT_DEAD
EXIT_ZOMBIE
EXIT_TRACE

task_is_running(task)

__State;

0x00000000
0x00000001
0x00000002

0x00000010
0x00000020
(EXIT_ZOMBIE | EXIT_DEAD)

(READ_ONCE ( (task)->__state) == TASK_RUNNING)

‘ Red Hat



struct task_struct -stacks

struct task_struct {

void *stack; /* kernel mode stack */

Userspace threads have separate stacks for userspace and kernel mode
Kernel threads have no userspace stack
Userspace stacks are accessible through VMA structures
Shadow stack - Copy of user space stack
o Created at entering syscall
o  When returning back to user space, return address to user space is compared with
original stack

‘ Red Hat



struct task_struct - affinity

struct task_struct {

const cpumask_t *cpus_ptr;
cpumask_t *user_cpus_ptr; /* Set by user using taskset */
cpumask_t cpus_mask;

e Bitmask of individual CPUs where the thread is allowed to run
Individual threads can be bound, or denied to run on specific CPUs
Can be modified using syscalls sched_getaffinity, sched_setaffinity, or user space tool

taskset




struct task_struct -scheduler

struct task_struct {

struct thread_info thread_info;
const struct sched_class *sched_class;
struct thread_struct thread;

e task_struct.thread_info
o  Per thread structure, contains a flag field, telling scheduler if thread should be
preempted
o Defined always as first item
e task_struct.thread
o  Architecture specific, on x86 contains CPU state when thread is preempted

o Defined always last
‘ RedHat



Memory Space Descriptor mm_struct

task_struct

> mm_struct

Userspace mapping, NULL for kernel threads

struct task_struct {
struct mm_struct *mm |

unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;

struct linux_binfmt *binfmt;



Memory Space Descriptor mm_struct

task_struct > mm_struct

A

pgd_t * pgd;

e Top level page directory for each process
o Multilevel page table hierarchy to translate
linear address to physical address

pgd_t *pgd = current->mm->pgd; // Get the PGD for

current process

p4d_t *p4d = pgd_offset(pgd,
pud_t *pud = p4d_offset(p4d,
pmd_t *pmd = pud_offset(pud,
pte_t *pte = pmd_offset(pmd,

address); // Get the
address); // Get the
address); // Get the
address); // Get the PTE entry

Kernel

Shared
Libraries




Virtual Memory Space Descriptor

vm_area_struct

task_struct >

pgd_t * pgd;

mm_struct L;
maple_tree mm_mt;

e Single continuous region of virtual memory within a
process
e Used for

@)

Memory mapping (heap, stack, code, shared
libraries)

Memory mapped files

Shared memory

Anonymous memory (e.g. alloc())

-
vm_end E
vm_start Py
\‘ x
vm_end — T *
vm_start - 9
o
el |-
@
vm_end = 2
vm_start \\\\\\\‘ _
vm_end \\\\\\\ Heap
vm_start N
\\\\\\ Stack
vm_end I
vm_start
\\\\\\ Code




Syscalls

Version number here VOOOOO ‘ Red Hat




Syscalls - Uname

S uname -a
Linux fedora33-kw 6.8.11-200.fc39.x86_64 #1 SMP PREEMPT_DYNAMIC Sun May 26
20:05:41 UTC 2024 x86_64 GNU/Linux




Syscalls - Macros

#define SYSCALL_DEFINE1(name, ...) SYSCALL_DEFINEx(1, _##name, __VA_ARGS__)

#define SYSCALL_DEFINE6(name, ...) SYSCALL_DEFINEx(6, _##name, __VA_ARGS__)

#define SYSCALL_DEFINEx(x, sname, ...) \
SYSCALL_METADATA(sname, x, __VA_ARGS__) \

__SYSCALL_DEFINEx(x, sname, __VA_ARGS__)

SYSCALL_METADATA - Data for tracing events
__SYSCALL_DEFINEx - Complex machinery of macros and GCC extensions to create the syscall

implementation

‘ Red Hat



Syscalls - Entries

0 common read sys_read
1 common write sys_write
2 common open sys_open

S sh ./scripts/syscalltbl.sh --abis common, 64 arch/x86/entry/syscalls/s
yscall_64.tbl arch/x86/include/generated/asm/syscalls_64.h

__SYSCALL(@, sys_read)
__SYSCALL(1, sys_write)
__SYSCALL(2, sys_open)

#define __SYSCALL(nr, sym) case nr: return __x64_##sym(regs);




Syscalls - Table

long x64_sys_call(const struct pt_regs *regs, unsigned int nr)

{

switch (nr) {
#include <asm/syscalls_64.h> -—

default: return __x64_sys_ni_syscall(regs);

} -

__SYSCALL(@, sys_read)
__SYSCALL(1, sys_write)
__SYSCALL(2, sys_open)

‘ Red Hat



Copying data to and from user space

Copy simple values:
[ J

get_user(x, ptr); // Get a simple variable from user space.
[ J

put_user(x, ptr); // Write a simple value into user space.
o X - Variable to store result

o ptr - Source/Destination address,

in user space.

Copy data:
e copy_from_user(void *to, const void __user *from, unsigned long n);
e copy_to_user(void

__user *to, const void *from, unsigned long n);

‘ Red Hat



Process Scheduler




Scheduler

Divide CPU resources between competing consumers (user/kernel threads)

Smallest scheduled unitis a thread (every process has at least one thread)

Thread state machine is defined using flags

Threads being executed or are ready to be executed are stored in a structure named
runqueue

Sleeping threads are stored in waitqueue

Each CPU has its own runqueues

Waitqueue is created by device drivers and the kernel, there can be many wait queues

Version number here VOO00O ‘ RedHat



Context Switch / Process Swap

Threads leave the CPU in one of two ways:

e \oluntary

o  Threadis waiting for an |O operation to finish
o  Thread is waiting for a lock to be opened
o  Thread decides to sleep

e Involuntary

o  Scheduling: When the CPU scheduler decides to switch to a different thread based on scheduling

policies (e.g. processes exceeded its scheduled allocation of CPU time)

Preemption: When a higher-priority thread becomes ready to run and preempts the currently executing
thread.

Version number here VOO00O ‘ RedHat



Context Switch / Process Swap

e Architecture specific
e [EXxpensive operation
o Saving CPU state of current thread (previous)
o Installing MM settings of the new (next) thread
o Restoring CPU state of the new (next) thread
m context_switch(...)

Version number here VOO00O ‘ RedHat



Scheduler Policies

Linux scheduler consists of several scheduling policies
Scheduling policy == scheduling algorithm
Every thread in the system is associated with only one policy
Current scheduling policies

o SCHED_DEADLINE

o SCHED_FIFO, SCHED_RR

o SCHED_NORMAL, SCHED_BATCH, SCHED_IDLE

Version number here VOO00O ‘ RedHat



Scheduling Classes

e Abstraction classes that hold the individual scheduling policies
New classes can be added and removed to source code depending on need

Each scheduling class has a different model how to select eligible tasks/threads, each scheduling class
maintains its own runqueue

struct sched_class {

void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);

struct task_struct *(*pick_next_task)(struct rq *rq);

void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);

Version number here VOO00O ‘ RedHat



Stop Scheduler Class

Does not have a policy
Highest priority
Can preempt everything and is preempted by nothing
Available only on SPM
One kernel thread per CPU
o  “migration/N"

Used by task migration, CPU Hotplug, RCUs, ftrace, kernel live patching

Version number here VOO00O ‘ RedHat



(Early) Deadline Scheduler Class

Policy SCHED_DEADLINE
The task with the earliest deadline will be served first
User has to set 3 parameters
o Period - activation pattern of the real time task
o Runtime - amount of CPU time that the application needs
o Deadline - maximum time in which the result must be delivered

Used for periodic real time tasks e.g. multimedia, industrial control

Version number here VOOOOO

& RedHat



Real Time Scheduler Class

Used for short latency sensitive tasks

Two policies

SCHED_FIFO
o  AKA POSIX scheduler
o  Runqueue is a FIFO pipe
o  Thread will run until it voluntary yields the CPU
o  Real time aggressive

SCHED_RR
o  100ms time slice by default
o Round Robin scheduler
o  Realtime moderately aggressive

Version number here VOO00O ‘ RedHat



EEVDF - Earliest Eligible Virtual Deadline First

Most common used scheduler, used for the rest of the all tasks in the system
Superseded CFS “Completely Fair Scheduler” scheduler by Ingo Molnar in v6.6 from 2007
Described in this 1995 paper by lon Stoica and Hussein Abdel-Wahab
Scheduling policies
o SCHED_NORMAL - Normal Unix tasks, default scheduler
o SCHED_BATCH - Low priority, non interactive jobs
o SCHED_IDLE - Nothing else is runnable on a CPU

Version number here VOO00O ‘ RedHat



EEVDF - Earliest Eligible Virtual Deadline First

Available CPU time equally between all of the runnable tasks in the system (assuming all have the
same priority)
Uses two factors to determine what processes to run
o “Lag” - the difference between the time that process should have gotten and how much it
actually got, is used to calculate the eligible time
o  "Virtual Deadline" - earliest time by which a process should have received its due CPU time
EEVDF it will run the process with the earliest virtual deadline first

Implemented with red-black trees

Version number here VOO00O ‘ RedHat



The Extensible Scheduler

Scheduling policy SCHED_EXT
Introduced recently in Jan 2023

|dea of “plugable schedulers”

Not really a scheduler itself, but a framework

Uses eBPF technology

O

O

O

Runtime load schedulers from userspace
Without need to recompile the kernel

Allows safe experimentation

Library of schedulers for niche applications (e.g. service, specific game, ...)

Version num ber here VOOO0O

& RedHat



Scheduler Code

e schedule() - __schedule() - __pick_next_task()
e Classes are ordered by the task priority they cover, classes with higher priority are being queried first

° __pick_next_class returns a pointer to the task_struct it self which will be executed

static inline struct task_struct *
__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)

{

const struct sched_class *class;
struct task_struct *p;

for_each_class(class) {
p = class->pick_next_task(rq);
if (p)
return p;

}

BUG(); /* The idle class should always have a runnable task. */
} Version number here VOOO0O ‘ Red Hat



Thread Scheduling

e Thread state machine is defined using flags
o task_struct.thread_info.flas |= TIF_NEED_RESCHED
m set_tsk_need_resched(struct task_struct *tsk)

e Whois calling the scheduler?
o Executed in context of current process
o  Return from syscall

o  Return from interrupt

Version number here VOO00O ‘ RedHat



Thank you!

Questions?

ooco ol RedHat



