oY)
@
(28
o)
=3
=
=
o
o+
(o)
C
=)
c
X
=
(1)
D
=
o

Basic intro to
Linux Kernel

.. at least some bits of it

Vratislav Bendel

Principal Software Maintenance Engineer

Agenda

What we'll
cover today:

Memory Management

High level overview

Scheduling & interrupts

Processing flow

Basic structs

Primitives you should know

Basic debugging

So youwon't get lost

Role of the kernel

..and it's scope

Role of the kernel

Role of the kernel

..and it's scope

Interface between userspace and HW
HW control
Syscall interface

Memory & process management

Memory Management

.. Just high level basics

MM: Intro

What is memory?

Kernel's perspective

» Memory is addressed in blocks called “pages”

» Asingle page size depends on architecture:
x86 ~ 4 kB ppc64, s390 ~ 64 kB

» Kernel defines memory zones: DMA, DMA32, Normal **

» Contiguous memory is packed into blocks of higher page order,

uptoorder10 [4MB of contiguous memory]

» /proc/buddyinfo

** Zone definitions were in the past and may in the future be subject to change

MM: Intro

Kernel's memory

It's a program as any other, right?

The Linux kernel is itself a C program with it's own structs and data.

Therefore it itself requires to allocate memory.
» Kernel uses a concept called “slabs”, a.k.a. “kernel memory caches”

» A page block gets “split” into dedicated objects of specific size

(for example inode cache, dentry cache, ...)
» Generic allocations via kmalloc() fall into kmalloc-XX slabs
» Large allocations (uncommon) fall to process-like vmalloc

» /proc/slabinfo

... more on the MM lecture

MM: Intro

Memory “types”
Types by usage

Cache memory

Data fetched from disk, stored in main memory for faster access
Anonymous memory

Transient/working process data - structures, variables, ...
Kernel memory

Slabs, per-cpu, page-tables - all kernel structures

/proc/meminfo

MM: Intro

Memory “types”

Process memory

> Virtual memory can overcommit

Kernel “acks” process’ allocation and creates
a Virtual Memory Area [VMA]

» Physical memory

Data actually stored in Main RAM
RSS - Resident Set Size

MM: Intro

Linux MM design

Page fault

Virtual addresses (process context) are mapped to physical addresses
(in RAM). These mappings are stored in “page tables” and CPU caches
them in the Translation Lookaside Buffer [TLB].

» When a virtual-to-physical mapping does not exist, the CPU

generates a HW exception “page_fault”

» Kernel handles the page_fault by allocating the physical page/s and

creating the mapping.

n

MM: Intro

Linux MM design

Lazy allocation scheme

Linux kernel utilizes a lazy allocation scheme:
> Processes are not allocating memory, they create virtual mappings

» Physical memory is allocated via page_fault, only once a virtual

address is actually accessed (read or write)

MM: Intro

Linux MM design

Allocation algorithm

Linux kernel is designed to utilize available resources.
» Physical allocations take ‘free’ memory page/s while available (fast path)

» Once ‘free’ memory is low (based on zone watermarks), the kernel needs

to reclaim some memory back into the ‘free’ pool (slow path)

Reclaim ~ Either drop cached or swap out anon pages

Scheduling & Interrupts

Processing flow

Sched & IRQ

Scheduling

Scheduling vs. Load Balancing

» Scheduling
How long should a process run (when it should be rescheduled)

Which process should be selected to run ‘next’

» Load Balancing

Where (on which CPU) should a process be scheduled to run

Sched & IRQ

Scheduling

Process states

Sleeping / Waiting
[IN]
Interruptible sleep

Runnable
[R/RU]

> New process fork >

AN
N\
> Zombie Dead / Gone

Blocked / D-state
[UN/D]
Uninterruptible sleep

» Runnable processes are enqueued to runqueue of one of the CPUs

Sched & IRQ

Scheduling

Algorithm

» The function schedule() picks the ‘next’ task from local CPU'’s runqueue

and switches it to be the now-actively running task.

> The ‘prev’ task, if still RUnnable, is enqueued back to runqueue

» The pick_next_task() depends on the Scheduling algorithm
EEVDF (older CFS), Real-Time (FIFO / RR), Deadline

Ref.: Earliest Eligible Virtual Deadline First $ man 7 sched

https://www.kernel.org/doc/html/latest/scheduler/sched-eevdf.html

Sched & IRQ

Interrupts
Control CPUs

A CPU executes binary code in incremental way. Hence in order to change

what it does, you need to interrupt the flow (simply said).

» Hardware interrupts from various devices register an irq_handler

function on the specific vector, which does the utmost necessary work.

» Bottom half (“softirqg”) parts are processed in kernel thread context.

» IRQs can be disabled for certain critical sections (except NMls, SMis, ..)

Sched & IRQ

Interrupts
Timers & IPIs

Kernel naturally used various “software interrupt” schemes

» Timers (basic [jiffies], high-resolution [cpu-clock], perf events [NMI])
For example: kernel tick (scheduler tick), watchdogs, ...

> [PIs (Inter-Processor Interrupts)

Reschedule pings
TLB shootdowns

Remote function calls / sync (“smp_call_function*()")

» /proc/interrupts

Basic structures

Primitives you should get familiar with

20

Basic structs

Linked List

The bread and butter

Linux kernel uses a doubly-linked list primitive data structure:

» Iinclude/linux/types.h

struct list_head { struct list_head *next, *prev; }

» include/linux/list.h
LIST_HEAD[_INIT J(name), list_empty() ,/ head == next == prev
list_add(), list_add_tail(), list_del(), ... / LIST_POISON[1/2]

» List heads are embedded in associated structs

21

Basic structs

Hlist

Deletion efficiency

Hash lists are used when efficient deletion is preferred, like hash tables.

» include/linux/types.h
struct hlist_head { struct hlist_node *first;

struct hlist_node §{ struct hlist_node *next, **pprev;

» include/linux/list.h
HLIST_HEAD[_INIT]J(name) INIT_HLIST_NODE(n)
hlist_empty(hlist-head *h) ,/ h->first == NULL
hlist_add_head(), hlist_add_before(), hlist_del(), ... // LIST_POISON[I1/2]

22

Basic structs

container_of()

Offset macro

The container_of() function macro is used to offset a pointer to the
beginning/root of the structure, where the pointer is an embedded linking
data structure, for example list, rb_tree node or other structures.

Effectively it simply translates to assembly pointer arithmetic.

» include/linux/container ofh

#define container_of(ptr, type, member)
@ptr: the pointer to the member.
@type: the type of the container struct this is embedded in.

@member: the name of the member within the struct.

23

Basic structs

Red-Black tree

When you need ordering

Red-Black tree structure is used when ordered lookup is needed.

Optionally a variant with cached leftmost element for O(1) search.

» include/linux/rbtree types.h

struct rb_root § struct rb_node {
structrb node *rb node: unsigned long __rb_parent_color;
¥ struct rb_node *rb_right;

structrb_root cached
— — { struct rb_node *rb_left;
structrb_rootrb_root; I

struct rb_node *rb_leftmost; §,

» rb_nodes are also embedded in associated structs.

24

Basic structs

Red-Black tree

When you need ordering

» General APl implemented in:
lib/rbtree.c

void rb_insert_color(struct rb_node *node, struct rb_root *root)

void rb_erase(struct rb_node *node, struct rb_root *root)

» Although many subsystems implement their own customized functions.

Baste structs

Radix tree, Xarray, Maple tree

Lookup in huge datasets

Radix tree (oldest), Xarray and Maple tree are data structures used primarily

to keep track of process’ address space VMAs (incl. pagecache).

» Radix tree is a “compressed trie” which maps long integer keys to
pointer values. It's good at storing huge datasets (address space), but
has certain inconveniences, namely when sparsely populated.

» Xarray and Maple tree (newest) are special data structures
implemented** specifically to tackle the problematics of storing

address space and other similar data more efficiently.

25 ** Kudos to Liam Howlett and Matthew Wilcox from Oracle, inc.

26

Baste structs

Radix tree, Xarray, Maple tree

Lookup in huge datasets

» Radix tree: (being deprecated)
https:/Iwn.net/Articles/175432/

> Xarray:

https:/docs.kernel.org/core-api/xarray.html

» Maple tree:

https://docs.kernel.org/core-api/maple tree.html

https://lwn.net/Articles/175432/
https://docs.kernel.org/core-api/xarray.html
https://docs.kernel.org/core-api/maple_tree.html

27

Basic structs

void* abstractions & unions

Polymorphism

Certain structures may be used in different ways or different contexts or

different subsystems, ...

» void* struct members are used for context-relative pointers
» C-lang unions define different uses of a given struct

» The code which works with the struct knows the context

» Commonly paired with specifying object types via flags members

28

Basic structs

void* abstractions & unions

Polymorphism

» Example excerpt: include/linux/mm types.h

struct page {
unsigned long flags;
union §

struct{ /*Page cache and anonymous pages */

void* private,;

%

struct{ /*page_poolused by netstack */ ... K
struct{ /* Tail pages of compound page */ .. I
struct{ /*Page table pages */ Fx

29

Basic structs

Bitmasks

Flags, cpumasks, etc.

Bitmasks are widely used to track attributes, types or parameters of various

structs or routines, or even control flow of complex algorithms.
» Examples:

GFP mask - include/linux/gfp_types.h

dentry flags - include/linux/dcache.h

cpumasks - include/linux/cpumask.h

30

Basic structs

Context macros

Know where you are

The CPU knows certain context information. Kernel code can get it

whenever needed:

» #define current

pointer to the task_struct of the currently executing process
on _this_ CPU

» #define smp_processor._id()

int number of the logical CPU where _this_ code is executing

31

Basic structs

Per-cpu structs
Efficiency

To optimize access and remove the need for synchronized access, certain
structures are created as “per-cpu” copies. The benefit is that each CPU

has its own struct, so there's no need for mutual exclusion.
» Each CPU has its “per-cpu offset”

» Per-cpu structs simply define a pointer/value that must be added to the
per-cpu offset to get the pointer to the structure belonging to the
specific CPU.

Basic Debugging

..ahh, not again ...

Basic Debugging

Kernel OOPS log

(Don't) panic

396811] block dm-8: the capability attribute has been deprecated

962056] oops_module: loading out-of-tree module taints kernel.

962106] oops_module: module verification failed: signature and/or required key missing - tainting kernel

714476] BUG: kernel NULL pointer dereference, address: 2000000000000000

714521] #PF: supervisor read access in kernel mode

714540] #PF: error_code(0x0000) - not-present page

714560] PGD @ P4D @

.714575] Oop: 0000 [#1] PREEMPT SMP NOPTI

714593] CPU: @ PID: 132782 Comm: insmod Kdump: loaded Tainted: G E 5.14.0-427.35.1.e19_4.x86_64 #1

714643] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39 04/01/2014

714680] RIP: 0010:hello_init+0x5/@xff@ [oops_module]

714712] Cod Unable to access opcode bytes at RIP oxffffffffce62efeb

714731] RSP: 0018:ffffb29700f33d90 EFLAGS: 00010246

714747] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000001

714767) X: 0000000000000000 RSI: ffffffff883eac23 RDI: ffffffffco62fole

714796] . ffffffffco62f010 RO8: 0000000000000010 RO9: 0020E20000000000

714821) : ffff9dedd8466401 R11: 2000000000000000 R12: ffffidedd7dbb700

.714845] : ffffb29700f33e28 R14: 2000000000000003 R15: 0000000000000000

714869) : 00007f3ff90fd740(0000) GS:ffffdee37c00000(0000) knlGS:0000000000000000
[514480.714895] : 0010 DS: 0000 ES: 0000 CRO: 0000000080050033
[514480.714915] ffffffffco62efeb CR3: 00000001T9876002 CR4: 0000000000770eTO
[514480.714935] PK 55555554

714945] Call Trace:

714955] <TASK>

714963] ? show_trace_log_lvl+@x1c4/0x2df

714980] ? show_trace_log_lv1+@x1c4/0x2df

714997] ? __pfx_init_module+@x10/@x1@ [oops_module]

715014] ? do_one_initcall+@x41/0x210

715031] __die_body.cold+@x8/0xd

715043] ? page_fault_oops+0x134/0x170

715064] ? sysfs_add_file_mode_ns+@x85/0x180

.715084] ? exc_page_fault+0x62/0x150

715101] ? asm_exc_page_fault+@x22/0x30

715124] ? __pfx_init_module+0x10/0x18 [oops_module]

715145) do_init_module+@x23/0x270

715163] pfx_init_module+0x10/0x10 [oops_module]

715183] ? hello_init+0x5/0xff@ [oops_module]

715203] do_one_initcall+@x41/0x210

715220] ? kmalloc_trace+@x25/0xa@

715237] do_init_module+@x5c/0x270

715253) __do_sys_finit_module+@xae/0x110

715273] do_syscall_64+0x59/0x90

715289] ? syscall_exit_work+@x103/@x130

715308] ? syscall_exit_to_user_mode+@x22/0x40

715327] ? do_syscall_64+0x69/0x90

715342] ? exc_page_fault+0x62/0x150

715358] entry_SYSCALL_64_after_hwframe+@x72/0xdc

.716062] RIP: 00@33:0x7f3ff883ee5d

716757] Code: ff c3 66 2e of 1f 84 00 00 00 00 00 90 f3 of 1e fa 48 89 f8 48 89 f7 48 89 db6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 of 05 <48> 3d @1 fo ff ff 73 01 c3 48 8b @d 93 af 1b @0 f7 d8 64 89 01 48
[514480.718322] : 002b:00007fff667b4b98 EFLAGS: 00000246 ORIG_RAX: 2000000000000139
[514480.719053) . fFfFFFffffffffda RBX: @00055d52ce407c0 RCX: 0@007f3ff883eeSd
[514480.719532] (: 0000000000000000 RSI: 000055d52b360962 RDI: 2000000000000003
[514480.720019] RBP: 0000000000000000 RO8: 0000000000000000 RO9: 2000000000000000
[514480.720481] R10: 0000000000000003 R11: 0000000000000246 R12: 000055d52b360962

720963] R13: 000055d52ce43200 R14: 000055d52b35f550 R15: 000055d52ce408d0

721451] </TASK>
[514480.721915] Modules linked in: oops_module(OE+) tls nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipvé nf_defrag_ipv4 rfkill ip_set nf_tables
nfnetlink sunrpc snd_hda_codec_generic ledtrig_audio snd_hda_intel intel_rapl_msr intel_rapl_common snd_intel_dspcfg snd_intel_sdw_acpi intel_pmc_core intel_vsec pmt_telemetry pmt_class snd_hda_codec kvm_intel snd_hda_core snd_hwdep snd_seq snd_seq_devi
jce snd_pcm kvm iTCO_wdt iTCO_vendor_support virtio_balloon snd_timer irqbypass rapl pcspkr snd lpc_ich i2c_i8@1 soundcore i2c_smbus joydev xfs libcrc32c virtio_gpu virtio_dma_buf drm_shmem_helper drm_kms_helper crct1@dif_pclmul ahci libahci crc32_pclmul
syscopyarea sysfillrect sysimgblt crc32c_intel fb_sys_fops virtio_net net_failover libata drm failover virtio_console ghash_clmulni_intel virtio_scsi virtio_blk serio_raw dm_mirror dm_region_hash dm_log dm_mod fuse
[514480.724632] CR2: 0000000000000000

34

Basic Debugging

Kernel OOPS log

(Don't) panic

Error message

Oops record (depending on the error)

Panic context - CPU, PID, command, kernel info
Hardware info

CPU registers’ contents

Call trace

Modules linked in

35

Basic Debugging

Basic issues
(Don't) panic

» BUG() and WARN()

Macros that include a condition and produce log output on ‘true’;

BUG also panics...

Print exact file+line of code

» NULL pointer dereference

» General protection fault

36

Basic Debugging

Basic issues
(Don't) panic

Kernel has various panic options:

» hung_task_panic

When a process is in UNinterruptible_sleep longer than threshold

» soft/hard lockup
When the CPU doesn't reschedule (soft) / process interrupts (hard)
for longer than watchdog_thresh (double for soft lockup)

» RCU stall
» OOM panic

37

Basic Debugging

Debugging approaches

At least some basic

» echo 'h' > /proc/sysrg-trigger

Instruct kernel to give you certain information... or panic
» printk()

Print stuff to kernel log, opt. with specific log-level

Ex.: printk(KERN_INFO “My very informative message\n”);

» kdump-+vmcore analysis

On kernel panic, there's a possibility to save a memory snapshot,

which can be later analyzed.

38

Basic Debugging

Kexec, kdump, crash
The heavy weight

» kexec
Mechanism to boot into another kernel.

[-p] flag can specify a kernel to boot into on panic()

> kdump
A systemd service that automates kexec setup and further sets up

the secondary (panic) kernel to save a memory snapshot (a vmcore)

» crash

A tool to open an analyze kernel vmcores

39

Basic Debugging

v

v

v

v

Kexec, kdump, crash
The heavy weight

/etc/kdump.conf
dump target - device & relative path

core_collector
Kernel command line param: crashkernel=

kdump.service
kdump initramfs

kexec -p

.. Demo

40

Extra

E xtra

If there's time left...

» Kernel processes

» VFS - virtual file system

» Control Groups [cgroups]

vy}
Q)
2
0
=)
=+
=3
(0]
—+
(o)
C
=)
C
X
N
(1)
=
2
®

Thank you

Red Hat is the world’s leading provider of enterprise
open source software solutions. Award-winning support,
training, and consulting services make Red Hat a trusted
adviser to the Fortune 500.

m linkedin.com/company/red-hat m facebook.com/redhatinc

E youtube.com/user/RedHatVideos twitter.com/RedHat

‘ Red Hat

