
B
asic Intro to Linux kernel

1

… at least some bits of it

Basic intro to
Linux Kernel

Vratislav Bendel
Principal Software Maintenance Engineer

Agenda

2

What we’ll
cover today:

▸ Memory Management
High level overview

▸ Scheduling & interrupts
Processing flow

▸ Basic structs
Primitives you should know

▸ Basic debugging
So you won’t get lost

Role of the kernel

Role of the kernel

3

… and it’s scope

Role of the kernel

4

▸ Interface between userspace and HW

▸ HW control

▸ Syscall interface

▸ Memory & process management

… and it’s scope

Role of the kernel

Memory Management

M
em

ory M
anagem

ent B
asics

5

… just high level basics

MM: Intro

6 ** Zone definitions were in the past and may in the future be subject to change

▸ Memory is addressed in blocks called “pages”

▸ A single page size depends on architecture:

x86 ~ 4 kB ppc64, s390 ~ 64 kB

▸ Kernel defines memory zones: DMA, DMA32, Normal **

▸ Contiguous memory is packed into blocks of higher page order,

up to order 10 [4MB of contiguous memory]

▸ /proc/buddyinfo

Kernel’s perspective

What is memory?

MM: Intro

7

The Linux kernel is itself a C program with it’s own structs and data.

Therefore it itself requires to allocate memory.

▸ Kernel uses a concept called “slabs”, a.k.a. “kernel memory caches”

▸ A page block gets “split” into dedicated objects of specific size

(for example inode cache, dentry cache, …)

▸ Generic allocations via kmalloc() fall into kmalloc-XX slabs

▸ Large allocations (uncommon) fall to process-like vmalloc

▸ /proc/slabinfo

… more on the MM lecture

It’s a program as any other, right?

Kernel’s memory

MM: Intro

8

▸ Cache memory

Data fetched from disk, stored in main memory for faster access

▸ Anonymous memory

Transient/working process data - structures, variables, …

▸ Kernel memory

Slabs, per-cpu, page-tables – all kernel structures

▸ /proc/meminfo

Types by usage

Memory “types”

MM: Intro

9

▸ Virtual memory can overcommit

Kernel “acks” process’ allocation and creates

a Virtual Memory Area [VMA]

▸ Physical memory

Data actually stored in Main RAM

RSS - Resident Set Size

Process memory

Memory “types”

MM: Intro

10

Virtual addresses (process context) are mapped to physical addresses

(in RAM). These mappings are stored in “page tables” and CPU caches

them in the Translation Lookaside Buffer [TLB].

▸ When a virtual-to-physical mapping does not exist, the CPU

generates a HW exception “page_fault”

▸ Kernel handles the page_fault by allocating the physical page/s and

creating the mapping.

Page fault

Linux MM design

MM: Intro

11

Linux kernel utilizes a lazy allocation scheme:

▸ Processes are not allocating memory, they create virtual mappings

▸ Physical memory is allocated via page_fault, only once a virtual

address is actually accessed (read or write)

Lazy allocation scheme

Linux MM design

MM: Intro

12

Linux kernel is designed to utilize available resources.

▸ Physical allocations take ‘free’ memory page/s while available (fast path)

▸ Once ‘free’ memory is low (based on zone watermarks), the kernel needs

to reclaim some memory back into the ‘free’ pool (slow path)

Reclaim ~ Either drop cached or swap out anon pages

Allocation algorithm

Linux MM design

Scheduling & Interrupts

M
em

ory M
anagem

ent B
asics

13

Processing flow

Sched & IRQ

14

▸ Scheduling

How long should a process run (when it should be rescheduled)

Which process should be selected to run ‘next’

▸ Load Balancing

Where (on which CPU) should a process be scheduled to run

Scheduling vs. Load Balancing

Scheduling

Sched & IRQ

15

▸ Runnable processes are enqueued to runqueue of one of the CPUs

Process states

Scheduling

Sched & IRQ

16

▸ The function schedule() picks the ‘next’ task from local CPU’s runqueue

and switches it to be the now-actively running task.

▸ The ‘prev’ task, if still RUnnable, is enqueued back to runqueue

▸ The pick_next_task() depends on the Scheduling algorithm

EEVDF (older CFS), Real-Time (FIFO / RR), Deadline

Algorithm

Scheduling

Ref.: Earliest Eligible Virtual Deadline First $ man 7 sched

https://www.kernel.org/doc/html/latest/scheduler/sched-eevdf.html

Sched & IRQ

17

A CPU executes binary code in incremental way. Hence in order to change

what it does, you need to interrupt the flow (simply said).

▸ Hardware interrupts from various devices register an irq_handler

function on the specific vector, which does the utmost necessary work.

▸ Bottom half (“softirq”) parts are processed in kernel thread context.

▸ IRQs can be disabled for certain critical sections (except NMIs, SMIs, ..)

Control CPUs

Interrupts

Sched & IRQ

18

Kernel naturally used various “software interrupt” schemes

▸ Timers (basic [jiffies], high-resolution [cpu-clock], perf events [NMI])

For example: kernel tick (scheduler tick), watchdogs, …

▸ IPIs (Inter-Processor Interrupts)

Reschedule pings

TLB shootdowns

Remote function calls / sync (“smp_call_function*()”)

▸ /proc/interrupts

Timers & IPIs

Interrupts

Basic structures

B
asic structs

19

Primitives you should get familiar with

Basic structs

20

Linux kernel uses a doubly-linked list primitive data structure:

▸ include/linux/types.h

struct list_head { struct list_head *next, *prev; };

▸ include/linux/list.h

LIST_HEAD[_INIT](name), list_empty() // head == next == prev

list_add(), list_add_tail(), list_del(), … // LIST_POISON[1|2]

▸ List heads are embedded in associated structs

The bread and butter

Linked List

Basic structs

21

Hash lists are used when efficient deletion is preferred, like hash tables.

▸ include/linux/types.h

struct hlist_head { struct hlist_node *first; };

struct hlist_node { struct hlist_node *next, **pprev; };

▸ include/linux/list.h

HLIST_HEAD[_INIT](name) INIT_HLIST_NODE(n)

hlist_empty(hlist-head *h) // h->first == NULL

hlist_add_head(), hlist_add_before(), hlist_del(), … // LIST_POISON[1|2]

Deletion efficiency

Hlist

Basic structs

22

The container_of() function macro is used to offset a pointer to the

beginning/root of the structure, where the pointer is an embedded linking

data structure, for example list, rb_tree node or other structures.

Effectively it simply translates to assembly pointer arithmetic.

▸ include/linux/container_of.h

#define container_of(ptr, type, member)

 @ptr: the pointer to the member.

 @type: the type of the container struct this is embedded in.

 @member: the name of the member within the struct.

Offset macro

container_of()

Basic structs

23

Red-Black tree structure is used when ordered lookup is needed.

Optionally a variant with cached leftmost element for O(1) search.

▸ include/linux/rbtree_types.h

struct rb_root {

 struct rb_node *rb_node;

 };

 struct rb_root_cached {

 struct rb_root rb_root;

 struct rb_node *rb_leftmost; };

▸ rb_nodes are also embedded in associated structs.

When you need ordering

Red-Black tree

struct rb_node {

 unsigned long __rb_parent_color;

 struct rb_node *rb_right;

 struct rb_node *rb_left;

};

Basic structs

24

▸ General API implemented in:

lib/rbtree.c

void rb_insert_color(struct rb_node *node, struct rb_root *root)

void rb_erase(struct rb_node *node, struct rb_root *root)

▸ Although many subsystems implement their own customized functions.

When you need ordering

Red-Black tree

Basic structs

25

Radix tree (oldest), Xarray and Maple tree are data structures used primarily

to keep track of process’ address space VMAs (incl. pagecache).

▸ Radix tree is a “compressed trie” which maps long integer keys to

pointer values. It’s good at storing huge datasets (address space), but

has certain inconveniences, namely when sparsely populated.

▸ Xarray and Maple tree (newest) are special data structures

implemented** specifically to tackle the problematics of storing

address space and other similar data more efficiently.

Lookup in huge datasets

Radix tree, Xarray, Maple tree

** Kudos to Liam Howlett and Matthew Wilcox from Oracle, inc.

Basic structs

26

Lookup in huge datasets

Radix tree, Xarray, Maple tree

▸ Radix tree: (being deprecated)

https://lwn.net/Articles/175432/

▸ Xarray:

https://docs.kernel.org/core-api/xarray.html

▸ Maple tree:

https://docs.kernel.org/core-api/maple_tree.html

https://lwn.net/Articles/175432/
https://docs.kernel.org/core-api/xarray.html
https://docs.kernel.org/core-api/maple_tree.html

Basic structs

27

Certain structures may be used in different ways or different contexts or

different subsystems, …

▸ void* struct members are used for context-relative pointers

▸ C-lang unions define different uses of a given struct

▸ The code which works with the struct knows the context

▸ Commonly paired with specifying object types via flags members

Polymorphism

void* abstractions & unions

Basic structs

28

▸ Example excerpt: include/linux/mm_types.h

struct page {

unsigned long flags;

union {

 struct { /* Page cache and anonymous pages */

…

void* private;

 };

 struct { /* page_pool used by netstack */ … };

 struct { /* Tail pages of compound page */ … };

 …

 struct { /* Page table pages */ … };

… };

Polymorphism

void* abstractions & unions

Basic structs

29

Bitmasks are widely used to track attributes, types or parameters of various

structs or routines, or even control flow of complex algorithms.

▸ Examples:

･ GFP mask - include/linux/gfp_types.h

･ dentry flags - include/linux/dcache.h

･ cpumasks - include/linux/cpumask.h

Flags, cpumasks, etc.

Bitmasks

Basic structs

30

The CPU knows certain context information. Kernel code can get it

whenever needed:

▸ #define current

･ pointer to the task_struct of the currently executing process

on _this_ CPU

▸ #define smp_processor_id()

･ int number of the logical CPU where _this_ code is executing

Know where you are

Context macros

Basic structs

31

To optimize access and remove the need for synchronized access, certain

structures are created as “per-cpu” copies. The benefit is that each CPU

has its own struct, so there’s no need for mutual exclusion.

▸ Each CPU has its “per-cpu offset”

▸ Per-cpu structs simply define a pointer/value that must be added to the

per-cpu offset to get the pointer to the structure belonging to the

specific CPU.

Efficiency

Per-cpu structs

Basic Debugging

B
asic D

ebugging

32

… ahh, not again ...

Basic Debugging

33

(Don’t) panic

Kernel OOPS log

Basic Debugging

34

▸ Error message

▸ Oops record (depending on the error)

▸ Panic context - CPU, PID, command, kernel info

▸ Hardware info

▸ CPU registers’ contents

▸ Call trace

▸ Modules linked in

(Don’t) panic

Kernel OOPS log

Basic Debugging

35

▸ BUG() and WARN()

･ Macros that include a condition and produce log output on ‘true’;

BUG also panics…

･ Print exact file+line of code

▸ NULL pointer dereference

▸ General protection fault

(Don’t) panic

Basic issues

Basic Debugging

36

Kernel has various panic options:

▸ hung_task_panic

When a process is in UNinterruptible_sleep longer than threshold

▸ soft/hard lockup

When the CPU doesn’t reschedule (soft) / process interrupts (hard)

for longer than watchdog_thresh (double for soft lockup)

▸ RCU stall

▸ OOM panic

(Don’t) panic

Basic issues

Basic Debugging

37

▸ echo ‘h’ > /proc/sysrq-trigger

Instruct kernel to give you certain information… or panic

▸ printk()

Print stuff to kernel log, opt. with specific log-level

Ex.: printk(KERN_INFO “My very informative message\n”);

▸ kdump+vmcore analysis

On kernel panic, there’s a possibility to save a memory snapshot,

which can be later analyzed.

At least some basic

Debugging approaches

Basic Debugging

38

▸ kexec

Mechanism to boot into another kernel.

[-p] flag can specify a kernel to boot into on panic()

▸ kdump

A systemd service that automates kexec setup and further sets up

the secondary (panic) kernel to save a memory snapshot (a vmcore)

▸ crash

A tool to open an analyze kernel vmcores

The heavy weight

Kexec, kdump, crash

Basic Debugging

39

▸ /etc/kdump.conf

dump target - device & relative path

core_collector

▸ Kernel command line param: crashkernel=

▸ kdump.service

kdump initramfs

kexec -p

▸ … Demo

The heavy weight

Kexec, kdump, crash

Extra

40

▸ Kernel processes

▸ VFS - virtual file system

▸ Control Groups [cgroups]

If there’s time left…

Extra

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

B
asic Intro to Linux Kernel

41

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

Thank you

