
Development environment
setup

Carlos Maiolino

Michal Schmidt

Rado Vrbosky

Vratislav Bendel

Leonardo Vaz

1

2

Overview ▸ Development and testing machines

▸ Development tools

▸ Kernel configuration

▸ Installing the Linux kernel

▸ Patch formatting and submission

3

▸ Every developer has his/her own way to work

▸ Don’t take the instructions here as hardcoded

▸ The only requirements are:

･ You submit patches in the proper format

･ Your patches apply to the specified repository

･ Your patches build

･ (Strongly encouraged) It works as expected

Disclaimer: Have your own way

4

Development and
testing machines

5

▸ If you screw up your code, you don’t lose your dev environment

▸ You can use bare-metal for development if you have a Linux machine

▸ We recommend Fedora, but you can use any distro as long as you

know how to use it.

▸ Why Fedora?

･ Bleeding edge tools available (we don’t need to compile

anything other than Linux itself).

･ We know how the package manager works

Why two different machines?

6

▸ Can be your bare-metal machine if you use Linux

▸ If you don’t use Linux, you will need to install a virtual machine

▸ Setup the development environment (more on this later)

▸ NFS server: Easy way to build the kernel in one place and install in

another

Development machine

7

▸ A Linux machine where we will install and test the Linux kernel

▸ Don’t need to be powerful

▸ At least 2 vCPUs would be great so we can use SMP

▸ As much memory as you have available

▸ NFS client

Test machine

8

▸ virt-manager (qemu, kvm, libvirt, .. virsh)

▸ … or anything else

VM setup example

Don’t underestimate storage
go 40+ GB

Default network sufficeFor build VM
go full RAM and CPUs

9

VM setup example

10

Development Tools

11

▸ git (mandatory)

▸ Linux source tree (of course)

▸ Compiler (gcc, clang)

▸ code editor (vim, emacs, whatever else you want to use)

▸ Navigation tools

▸ Debug tools (To be discussed later)

Some useful tools

12

▸ Linux development is split into the main tree and subsystem trees

▸ We will use Linus’s main tree for the purposes of the course

･ Your local copy should be cloned from Linus’s tree

･ Check-out v6.16 tag.

Obtaining the source code

git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

13

Linux Kernel Flavours

Receive and merge patches

related to a specific

subsystem or subcomponent

Maintainer Subtree

Linus' main tree, the end point

of all Linux’s patches.

Vanilla

Aggregate bleeding edge

patches, usually used to test

before merging into mainline

Linux-Next tree

14

Quick look into
kernel configuration

15

▸ How the kernel .config file works

▸ How to create the config file the easy way

･ Copy from a distribution and change it

･ Use kernel config generator

･ Graphical tools (xconfig, gconfig, nconfig, menuconfig)

▸ The hard way: $make config

▸ The spartan way: write the .config yourself!

Configure your kernel

16

Building and
installing the kernel

17

▸ In order to build the kernel, the .config should be ready

･ You can tweak the version if you want (see localversion file)

▸ Distribution package vs standard build vs Tarball

･ Run $ make help and look for the options

▸ Run $ make -jX >/dev/null to start building the kernel

･ Where X depends on how many CPUs you have available

▸ Wait a long time

▸ Hope for no errors (otherwise you'll need to start it over).

Building

18

▸ Transferring the built kernel image to the test machine

･ Copying the package

･ Packaging the executables (kernel image/modules) and copying

them

･ Accessing the dev environment via NFS

▸ The development environment should be the same architecture

･ Unless you are cross-compiling a kernel for a different architecture

▸ Make sure your kernel is finally bootable

･ Disabling graphical boot and enabling console helps

Installing

19

Browsing the
Kernel Tree

20

https://makelinux.github.io/kernel/map/

Documentation/
scripts/
tools/
MAINTAINERS
README

Kernel Directory Structure

arch/
crypto/
include/
kernel/
lib/

block/
drivers/
fs/
mm/
net/
virt/

https://makelinux.github.io/kernel/map/

21

Environment examples

22

▸ Git

･ git-worktree

･ guilt

▸ tmux

▸ vim + nerdtree + tagbar

▸ cscope

▸ neomutt

Carlos

23

▸ git

▸ screen

▸ vim + nerdtree + tagbar

▸ make tags, grep

▸ mutt, gitlab

▸ qemu

Rado

24

▸ git

▸ vim (quite raw TBH)

▸ cscope, gtags, grep

▸ perf, trace-cmd, systemtap

▸ bash & python scripts

Vraťo

25

▸ git (with ~8 git-worktree trees)

▸ vim

▸ cscope, grep

▸ bpftrace, trace-cmd, systemtap

▸ bash & python scripts

Michal

26

Linux coding style and
patch submission
process

27

▸ Linux maintainers are strict regarding coding style

▸ Make sure your code follows it

▸ There are tools for checking the code style

･ Coding style check script (scripts/checkpatch.pl)

･ vim plugin (if you use vim)

▸ Coding Style in the following URL:

https://docs.kernel.org/process/coding-style.html

Linux Kernel coding style

https://docs.kernel.org/process/coding-style.html

Prepare your patch for submission

28

▸ Avoid heated discussions in the mailings

▸ Make sure that

･ Your patch applies against the tree you are submitting it

･ It builds

･ The kernel boots and it doesn't crash the system immediately

▸ Beginner friendly tool: $ git format-patch

https://git-scm.com/docs/git-format-patch

https://git-scm.com/docs/git-format-patch

29

▸ Look for a mailing list related to what you are changing

･ Most of the time, patches are not submitted against the main tree

▸ Make sure your patch is tested on the right tree before submitting

▸ Use scripts/get_maintainer.pl to find the subsystem maintainer

Where should we send the patch?

https://www.kernel.org/doc/html/latest/process/submitting-patches.html

https://www.kernel.org/doc/html/latest/process/submitting-patches.html

Send it!

30

▸ Linux upstream community is email based

▸ You can use git send-email

▸ Configure your ~/.gitconfig to submit patches

▸ See the documentation for examples

▸ DON’T SEND PATCHES AS ATTACHMENT

▸ DON’T SEND EMAILS ON ANY FORMAT OTHER THAN text/plain

https://git-scm.com/docs/git-send-email

https://git-scm.com/docs/git-send-email

31

Recap

$ git commit $ git format-patch $ scripts/check_patch.pl $ git send-email

Step 1:
Commit your

changes

Step 2:
Extract the patch

to a file

Step 3:
Check the

Coding Style

Step 4:
Submit the

Patch

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

32

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

